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Abstract 
 
The contribution of weather and environmental factors (WEF) to the increase in daily confirmed cases of 

coronavirus disease 2019 (COVID-19) is not fully understood. This study focused on the influence of 

average national daytime temperature (oC), night-time temperature (oC), daytime relative humidity (%), 

night-time relative humidity (%), Ultraviolet index at noon, Aerosol Optical Depth and volumetric soil 

moisture (%) on the COVID-19 cases. Daily national COVID-19 data was obtained from Datopian of the 

total number of confirmed COVID-19 cases reported in Kenya, Ethiopia, Ghana, Nigeria, South Africa and 

Egypt. Daily COVID-19 data for the period 1st March 2020 and 31st July 2020 were compared with each of 

the six countries’ WEF. National area average time-series of the atmospheric parameters, using data from 

National Aeronautics and Space Administration (NASA) Giovanni website, were generated by computing 

spatial averages over the given variable for each country. Incubation period of COVID-19 ranged from 1- 

14 days. Therefore, the effects of each parameter within 1, 5, and 14 days were examined. The analyses were 

conducted based on Pearson correlation coefficient. Generally, a marked heterogeneity of relationships of 

factors assessed was evident among the countries. Highest positive correlation was observed for Ultraviolet 

index 14 days earlier (r=0.852, p=0.000), while negative correlations were observed for daytime 

temperature 5 days earlier (r = -0.840, p=0.000), and on the day (r= -0.869, p=0.000), respectively. Generally 

night-time temperatures favored COVID-19 transmission more that daytime temperatures. Nigeria 

depicted relatively the highest sensitivity to weather and environmental factors. These findings may prove 

foundational in evolving predictive potential of COVID-19 transmission using weather and environmental 

factors. 

Introduction 

COVID-19, a highly transmittable and 
pathogenic viral infection caused by the severe 
acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), demonstrated   rapid spreading.  As of 
14th September 2020, there were more than 29 
million confirmed COVID-19 cases worldwide 
(Worldometer, 2020) since its first reported case 
in Wuhan, China in December, 2019 (World 
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Health Organization, Regional Office for Africa, 
2020a). In Africa there were over 1.3 million 
confirmed COVID-19 cases. The rapid spread of 
COVID-19 is related to SARS-CoV-2 carriers 
being highly infectious while being 
asymptomatic and the high capability of the virus 
to survive in various environmental conditions 
(Yu et al., 2020). The contribution of 

environmental factors to the increase in daily 
confirmed cases is not fully understood.  
Forecasting the spread of COVID-19 pandemic 
and its effect on society is useful as a tool for 
optimizing control strategies (Scafetta, 2020). 
 
Most countries have been following syndromic 
and risk-based surveillance. The former is a 
traditional and vigilant approach of disease 
surveillance majorly based on case identification. 
The latter involves contact tracing and testing of 
high-risk individuals. However, these methods 
are devoid of the possibility of early warning or 
forecasting ahead of time for decision making 
about best control measures (Foddai et al., 2020).  

 
The COVID-19 outbreak continued to evolve in 
the African continent since its first detection in 
Algeria on 25 February 2020 (World Health 
Organization, Regional Office for Africa, 2020b). 
As of 30 June 2020, the countries reporting high 
numbers of deaths were: South Africa 2657 (43%), 
Algeria 912 (15%), Nigeria 590 (9.6%), Cameroon 
313 (5.1%), Democratic Republic of the Congo 169 
(2.8%), Kenya 148 (2.4%), Mauritania 128 (2.1%), 
Mali 116 (2.0%), Senegal 112 (1.8%), Ghana 112 
(1.8%) and Ethiopia 103 (1.7%). South Africa, 
Nigeria, Algeria and Cameroon accounted for 
73% of the total deaths reported in the region. By 
the end of June 2020, 30 (64%) countries in the 
region were experiencing community 
transmission, 9(19%) with clusters of cases and 8 
(17%) with sporadic cases of COVID-19. The 
continent had also observed increased incidences 
of importation of cases from affected countries 
within the region, largely fuelled by long-
distance truck drivers and illicit movement 
through porous borders (World Health 
Organization, Regional Office for Africa, 2020b). 
 
The question of airborne transmission is 
increasingly important to not only health 
workers, waste treatment plant workers, but 
also communities. The use of face masks in the 

outdoor environment, in many countries around 
the world, attested to this. Studies on Influenza 
indicate the possibility that it is transmitted from 
person to person in various routes, including 
airborne. The relative importance of each 
pathway still remains poorly understood (Liu et 
al., 2020). Aerosol particle range and amount of 
aero sized viruses contribute to the probability of 
air borne transmission. Airborne particles of less 
than 5µm in aerodynamic diameter are of 
particular concern because they remain airborne 
for an extended time. This indicates that the state 
of the outdoor atmospheric environment 
contributes to the probability of transmission.  
Research findings indicate that COVID-19 can be 
transmitted from person to person through 
droplets, aerosols and direct contact (Lindsley et 
al., 2010; Liu et al., 2020; Ziros et al., 2011). 

 
The coronavirus transmission can also be affected 
by various factors such as climate conditions 
(temperature, humidity and wind speed), 
population density and available medical 
facilities (Dalziel et al., 2018).  

 
This study sought to explore the relationship 
between daily confirmed COVID-19 cases and 
environmental parameters, namely: average 
national daytime temperature (DTT), night time 
temperature (NTT), daytime relative humidity 
(DRH), night-time relative humidity (NRH), 
Ultraviolet (UV) index at noon and volumetric 
soil moisture (VSM). 
 
Materials and Methods 

Study area 
The scope of the study was six African Countries, 
namely: Kenya, Ethiopia, Ghana, Nigeria, South 
Africa and Egypt (Figure 1). They were chosen as 
representatives of four regions of the continent, 
that is, eastern, western, southern and northern 
Africa. These regions also depict unique 
environmental and climatic conditions. The other 
criterion was based on the heterogeneity of the 
number of reported COVID-19 cases. 
 
Data collection methods 
Data on the total number of confirmed COVID-19 
cases reported in Daily COVID-19 data for each 
country for the period 13th March 2020 and 5th 
July 2020 were collected from the Datopian, an 
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open-source database (Datopian opensource data 
repository, 2020/2020; Dong et al., 2020). 

National area average time-series of 
environmental parameters, using data from 
National Aeronautics and Space Administration 
(NASA) Giovanni website, were generated by 

computing spatial averages over the user-
selected area of the selected surface temperature 
variable for each time step within the given 
national boundary (Acker and Leptoukh, 2007). 
The seven parameters are elaborated below in 
Table 1. 

 
Table 1 

Type, resolution and sources of satellite-based weather and environmental data 

Parameter Source Units Spatial 
resolution 

Relative humidity (daytime) AIRS % 1o 
Relative humidity (night time) AIRS % 1o 
Air temperature at Surface (Daytime)  AIRS oC 1o 
Air temperature at Surface (Night Time)  AIRS oC 1o 
Aerosol Optical Depth MODIS 

Aqua 
Unit less 1o 

UV Index OMI Unit less 1o 
Volumetric Soil Moisture from 6.9 GHZ AMSR-2 % 10km 

 
 
Aerosol Optical Depth (AOD) or "Aerosol Optical 
Thickness" is the degree to which aerosols 
prevent the transmission of light by absorption or 
scattering of light (Acker and Leptoukh, 2007).  
The Atmospheric Infrared Sounder (AIRS) is a 
grating spectrometer (R = 1200) aboard the 
second Earth Observing System (EOS) polar-
orbiting platform, EOS Aqua. In combination 
with the Advanced Microwave Sounding Unit 
(AMSU) and the Humidity Sounder for Brazil 
(HSB), AIRS constitutes an innovative 
atmospheric sounding group of visible, infrared, 
and microwave sensors. (Acker and Leptoukh, 
2007).  
 
Ultraviolet index or Erythemal UV Exposure is a 
measure of the potential for biological damage 
due to solar ultraviolet radiation. The Total 
Ozone Mapping Spectrometer (TOMS) and 
Ozone Measuring Instrument (OMI) Erythemal  
 
UV Exposure are calculated using UV irradiance 
reaching the surface of earth (deduced from 
measured UV irradiance entering the 
atmosphere, Total Ozone, and Surface 
Reflectivity info) and weighted by a model value 
of the susceptibility of Caucasian skin to sunburn 
(erythema) (Acker and Leptoukh, 2007). 
 

Average layer soil moisture is the depth-
averaged amount of water present in a specific 
soil layer beneath the surface. Soil moisture 
content can be measured as Gravimetric Soil  
Moisture (GSM). GSM is the mass of water 
compared to the mass of solid materials per unit 
volume of soil. Soil moisture can also be 
expressed as Volumetric Soil Moisture (VSM) 
which is the volume of water per unit volume of 
soil. As water is of a known density, the mass of 
water per unit volume of soil (g/cm3) can be 
easily determined (Acker and Leptoukh, 2007). 
 
Data analysis 
Pearson correlation coefficients were calculated 
between the daily environmental parameters and 
the daily records of COVID-19 cases. Recent 
studies have used both Pearson Correlation and 
Spearman test to calculate the correlation 
coefficient between COVID-19 and weather, 
climate and environmental parameters. For 
instance, (Scafetta, 2020) calculated the Pearson 
correlation coefficients between the weather 
indices and the logarithm of the Deaths per one 
Million records because the latter can be 
hypothesized to increase exponentially with 
environmental variables. On the other hand, 
(Sfîcă et al., 2020) applied Spearman test for 
correlation between UV solar radiation data and 
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COVID-19 cases, while significance of weather 
parameters from long-term means was checked 
using Student and Mann-Whitney tests. 
 
Lagged correlation analysis was performed 
between the confirmed COVID-19 cases and the 
environmental parameters.  Considering its 
incubation period, which is of around 1 to 14 days 
according to (Backer et al., 2020; Lai et al., 2020), a 

period of 14 lag correlations was used for 
Correlation analysis. Backer et al., (2020) and Lai 
et al., (2020) documented a significant correlation 
between temperature and COVID-19 confirmed 
cases with a temperature lead time of 5 days. 
Şahin, (2020) analysed the impact of temperature, 
dew point, humidity, and wind speed within 1, 3, 
7, and 14 days of the case on COVID-19 cases 
using data in Turkey. In this study computations 
were done for lag zero, lag 5 and lag14. 
Regression analysis was then performed on the 
variables with strong correlations (>0.75). 
 
Results  
  
Exploratory correlation analysis was initially 
performed to establish pertinent relationships. 
Lagged correlation analyses between confirmed 
COVI-19 case on one hand and day time 
temperature (DTT), Night Time Temperature 
(NTT), Day Time Relative humidity (DTRH), 
Night Time Relative Humidity (NTRH), noon 
time UV index (UV), Aerosol Optical Depth 
(AOD), and Volumetric Soil Moisture (VSM) on 
the other, were performed on four regions of 
Africa.  Kenya and Ethiopia represented Eastern 
Africa, Egypt represented Northern Africa; 
Ghana and Nigeria represented western Africa 
and South Africa represented Southern Africa.  
 
Five out of the seven environmental parameters, 
namely: UV index, AOD, NTRH, NTT and DTT 
are significantly correlated with covid-19 cases at 
lag zero, with the highest r and p values being UV 
index (-0.787, p=0.000), AOD (0.598, p=0.000), 
NTRH (0.723, p=0.000), NTT (-0.534, p=0.032) 

and DTT (-0.869, p=0.000), respectively (Table 2). 
There is a clear uniqueness at national level with 
both positive and negative correlation 
coefficients reported at p<0.05. The UV index is 
significantly and inversely correlated with 
COVID-19 cases in all the countries apart from 
South Africa. Strong UV index correlations are 
recorded over Ethiopia and Egypt.  
 
Regional heterogeneity in most of the 
relationships is discerned. For instance, at lag 
zero, northern Africa shows a significant positive 
relationship between COVID-19 cases and UV 
index as opposed to Western and Eastern Africa 
that recorded significant negative relationships. 
Southern Africa recorded insignificant 
relationship with UV. However, night time 
temperatures depict homogeneity in three 
countries where significant relationships are 
reported.  
 
Nigeria and Kenya, at lag zero, have four 
parameters with significant correlations while 
Ethiopia has only one. On the other hand, the 
satellite data for Ghana had many missing values 
hindering the computation of p values. This is a 
pointer to the fact that local weather 
environmental factors may be responsible for the 
observed relationships.  More localized studies 
will shed light into this assertion. 
 
At lag five (Table 3), six environmental 
parameters are significantly correlated with 
COVID-19 cases. Strong correlations are depicted 
by Day time temperature over Nigeria (r= -0.840, 
P=0.0001), UV index over Egypt (r=0.805, 
P=0.003), and Day time temperature over Egypt 
(r=0.761, P=0.000). Consequently, UV index still 
remains the most prominent atmospheric 
parameter associated with the COVID-19 
transmission followed by daytime temperature. 
Nigeria and Kenya, at lag 5, still have four 
parameters with significant correlations while 
each of the rest have only two parameters.
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Table 2 

Correlation coefficients between the weather and environmental parameters and COVID-19 cases at Lag zero 
 

EP 
Kenya 
C19 

PV 
Ethiopia 

C19 
PV  

Egypt 
C19 

 PV  
Ghana 
C19 

Nigeria 
C19 

 PV  
South 
Africa 
C19 

 PV  

UV -0.652 0.000 -0.787 0.000 0.777 0.057 -0.484 -0.651 0.000 -0.532 0.227 

AOD 0.598 0.000 0.239 0.200 -0.171 0.003 -0.363 -0.450 0.006 0.222 0.000* 

DTRH -0.011 0.000 0.557 0.839 -0.273 0.001 0.523 0.753 0.864 -0.427 0.181 

NTRH -0.218 0.013 0.284 0.529 -0.106 0.001 0.318 0.723 0.000 -0.510 0.000* 

NTT -0.334 0.008 -0.284 0.000 0.746 0.675 -0.582 -0.455 0.015 -0.543 0.032* 

DTT -0.357 0.000 -0.536 0.955 0.714 0.000 -0.792 -0.869 0.000 -0.464 0.054* 

VSM 0.008 0.636 0.402 0.165 -0.307 0.298 0.677 0.712 0.149 0.027 0.605 

 
*EP= Environmental Parameter, PV= p value, UV= Ultraviolet radiation Index, AOD= Aerosol Optical 
Depth, DTRH= Day-time relative humidity, NTRH = Night time Relative Humidity, NTT= Night time 
Temperature, VSM = Volumetric soil moisture, C19 = COVID-19 cases. 
 
Table 3 

Correlation coefficients between the weather, environmental parameters and COVID-19 cases at Lag 5. 
 

Environmental 
parameter 

Kenya C19 Ethiopia C19 Egypt C19 
Ghana 
C19 

Nigeria C19 
South Africa 
C19 

r PV r PV  r PV  R r PV  r PV  

UV -0.656 0.000 -0.791 0.000 0.805 0.003 -0.464 -0.647 0.000 -0.580 0.143 

AOD 0.603 0.000 0.443 0.130 -0.151 0.004 -0.346 -0.410 0.001 0.207 0.000 

DTRH -0.013 0.000 0.544 0.360 -0.304 0.012 0.545 0.752 0.706 -0.441 0.371 

NTRH -0.215 0.014 0.258 0.584 -0.168 0.000 0.279 0.722 0.001 -0.568 0.000 

NTT -0.334 0.008 -0.140 0.002 0.787 0.539 -0.529 -0.372 0.092 -0.579 0.025 

DTT -0.357 0.000 -0.520 0.357 0.761 0.000 -0.781 -0.840 0.000 -0.508 0.016 

VSM 0.005 0.619 0.457 0.020 -0.320 0.911 0.727 0.665 0.372 0.102 0.424 

 
*PV= p value, UV= Ultraviolet radiation Index, AOD= Aerosol Optical Depth, DTRH= Day-time relative 
humidity, NTRH = Night time Relative Humidity, NTT= Night time Temperature, VSM = Volumetric 
soil moisture, C19 = COVID-19 cases. 
 
We demonstrate that, at lag 14 (Table 4), five weather and environmental parameters are significantly 
correlated with COVID-19 cases. Strong correlations are depicted by UV index over Egypt (r=0.852, 
P=0.000) Day time temperature over Nigeria (r= -0.779, P=0.000), and Day time temperature over Egypt 
(r=0.783, P=0.004).  
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Table 4 

Correlation coefficients between the weather and environmental parameters and COVID-19 cases at Lag 14. 
 

Country 
specific 
EP 

Kenya 
C19 

 PV 
Ethiopia 
C19 

 PV 
Egypt 
C19 

 PV 
Ghana 
C19 

Nigeria 
C19 

 PV 
South 
Africa 
C19 

 PV 

UV -0.673 0.000 -0.758 0.000 0.852 0.000 -0.478 -0.613 0.000 -0.656 0.983 

AOD 0.529 0.013 -0.758 0.478 -0.149 0.010 -0.267 -0.323 0.014 0.157 0.000 

DTRH -0.134 0.000 0.337 0.126 -0.360 0.034 0.555 0.753 0.838 -0.345 0.060 

NTRH -0.220 0.021 0.468 0.687 -0.207 0.001 0.199 0.708 0.000 -0.428 0.001 

NTT -0.179 0.192 -0.469 0.555 0.813 0.349 -0.381 -0.171 0.002 -0.638 0.159 

DTT -0.281 0.002 0.110 0.191 0.783 0.004 -0.728 -0.779 0.000 -0.617 0.002 

VSM -0.034 0.255 -0.381 0.046 -0.342 0.583 0.746 0.645 0.168 0.165 0.495 

 

*PV= p value, UV= Ultraviolet radiation Index, AOD= Aerosol Optical Depth, DTRH= Day-time relative 
humidity, NTRH = Night time Relative Humidity, NTT= Night time Temperature, VSM = Volumetric 
soil moisture, C19 = COVID-19 cases. 
 
Comparing the three different lag correlation 
coefficients we observe that Night-time Relative 
Humidity is significantly related to COVID-19 
cases at lag zero, 5 and 14 in Kenya, South Africa 
and Nigeria. However, the correlations are 
moderate. It is notable that Egypt shows weak 
relationship between Daytime RH and COVID-
19 cases. Ethiopia too records a weak correlation 
between Volumetric Soil Moisture and COIVID-
19 cases at lag 14.  
 
Nigeria and Egypt, at lag 14, have three 
parameters with significant correlations while 
each of the rest have only two parameters. It may 
be inferred that Nigeria as a country is most 
sensitive to environmental factors as far as 
COVID-19 is concerned, with the least sensitive.  
 
Linear regressions between the COVID 
transmission cases for those with strongest lag 14 
correlation, that is, Egypt and Nigeria Figures 2 
and 3. Scatter plots of the strongest lag 14 
correlations at national levels are presented in 
Figures 4 to Figure 6.  
 
It may be noted that Egypt depicted the strongest 
correlation (Table 2). A non-linear pattern is 
evident even though the coefficient of 
determination (R2) is 0.749 (Figure 2). An 
exponential curve fit yielded R2 = 0.874. (Figure 

3). Predictability of COVID-19 at national level 
using ultraviolet radiation may be promising 
especially for Egypt as depicted in Figures 2 and 
3.  
 
The second strongest correlation is between 
COVID-19 cases and daytime temperature in 
Nigeria (Figure 4). The remaining countries, 
including South Africa, Kenya and Ethiopia, had 
moderate to weak correlation coefficients (Figure 
5). The R2 ranges from 0.38 to 0.573 implying that 
the predictive potential of these parameters is 
low to moderate. 
 
However, it is vital to state that our study forms 
a preliminary view and has some limitations. A 
longer study period might better represent the 
relation between meteorological conditions and 
the COVID-19 transmissibility.  

Discussion 

Climate and seasonality 
The findings confirm that ultraviolet radiation is 
one of the most important weather parameters 
for the control of Covid-19 virus control (Gunthe 
et al., 2022; Sagripanti and Lytle, 2007; Sfîcă et al., 

2020). According to Sagripanti and Lytle, 2007 
UV radiation has been noted to contribute to 
inactivation of coronaviruses. The germicide 
power of UV light depends on factors such as 
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wavelength and the type of targeted 
microorganism. UV radiation is classified in 
subtypes, depending on their wavelength: UV-A 
(315–400 nm), UV-B (280–315 nm), and UV-C 
(100–280 nm) (Kerr and Fioletov, 2008). It is 
widely considered that UV-C types of radiation 
with shorter wavelength (< 280 nm) is the unique 
type of UV radiation that induces a germicide 
effect (Pozo-Antonio and Sanmartín, 2018). The 
effect of atmospheric temperature on viral 
inactivation has been reported for Middle East 
respiratory syndrome coronavirus (MERS-CoV), 
SARS-CoV-2-related coronaviruses SARS-CoV 
and COVID-19.  Some previous studies have 
similarly reported possible inactivation of 
bacteria and viruses by solar radiation (Bezabih 
et al., 2020; Casanova et al., 2010). 

  
Scientific evidence on COVID-19 and the weather 
presents mixed results in literature. Several 
studies have reported significant positive and 
negative correlations between weather 
parameters such as temperature, dew point, 
humidity, wind speed, rainfall and COVID-19 
transmissions and fatality (Ma et al., 2020; Pirouz 
et al., 2020; Qi et al., 2020; Şahin, 2020; Shakil et al., 

2020). Further, previous studies on the 
relationship between weather and COVID cases 
indicate that temperature and humidity have a 
significant influence on the number of confirmed 
cases for certain locations (Ahlawat et al., 2020; 
Backer et al., 2020). Backer et al., (2020) and Liu et 
al., (2020) reported significant correlation 

between COVID-19 cases and average air 
temperature at lag 5.  This is in congruence with 
the findings of this study.  These findings on 
lagged relationship between weather parameters 
and COVID -19 cases support the assertion by 
Sfîcă et al., (2020) that there is high possibility that 
weather factors play a role in either the 
emergence, early-stage transmission, and 
probably re-emergence in different areas.  
 
The current study findings are supported by 
laboratory and epidemiological studies which 
indicate that atmospheric temperature plays an 
important role in the survival and transmission of 
coronavirus (Bezabih et al., 2020).  Indeed, studies 
have already demonstrated that respiratory 
infectious diseases are influenced by weather and 
climate (Mirsaeidi et al., 2016).  Therefore, there is 

a need to consider the relationship between the 

emergence and development of the COVID-19 
outbreak on one side and the weather conditions.  
 
As far as wind is concerned, analysis has shown 
that dry soils surface moisture and threshold 
wind speed depend significantly on air humidity 
(Ravi et al., 2004).  
 
In terms of seasonality, previous studies have 
demonstrated that wintertime climate 
(temperatures below 100C) and host behaviour 
can favour the influenza transmission 
(Chattopadhyay et al., 2018; Shaman et al., 2011) 
and other human coronaviruses (Killerby et al., 
2018; Neher et al., 2020). Further, seasonality of 

pneumonia, as well, has been explained by a 
series of combined factors such as indoor 
crowding (derived from the colder season and 
producing closer contacts) and poor indoor air 
quality in association with other seasonal 
respiratory pathogens, as well as outdoor 
conditions such as low relative humidity and low 
amounts of ultraviolet radiation (Mirsaeidi et al., 
2016; Sfîcă et al., 2020). 
 
Weather systems as drivers of weather elements 
There is scant literature on how key drivers of 
weather elements are connected to COVID-19 
pandemic (Ramírez and Lee, 2021). These 
weather elements, including temperature, 
rainfall and wind over the African continent are 
driven by the Inter-tropical Convergence Zone 
(ITCZ), the El-Nino Southern Oscillation (ENSO), 
High pressure cells, Madeen- Julian Oscillation 
(MJO) and solar cycle, among others (Omondi et 
al., 2013; Palmer et al., 2023; Van Oldenborgh et 

al., 2021).  

The El Niño–Southern Oscillation (ENSO) has 
two opposing phases: El Niño and La 
Niña. During El Niño, warmer-than-usual sea 
surface temperatures occur in the tropical eastern 
Pacific Ocean. Atmospheric pressure anomalies 
at specific locations (e.g., higher pressure at 
Darwin, Australia, and lower pressure at Tahiti, 
French Polynesia) also characterize El Niño over 
the African continent (Omondi et al., 2013; Palmer 
et al., 2023). A temperature increase during El-

Nino and the change in wind speeds would in 
turn enhance COVID-19 spread. Increase in 
temperature during El-Nino increases humidity, 
thus enhancing quantities of water droplets 



 

8 
 

which act as carries of COVID-19.  The El Niño 
generally leads to above-normal rainfall 
conditions (Omay et al., 2023). 
 
Regional weather characteristics 
The heterogeneity observed in most of the 
relationships in the current study are likely 
attributable to the varying drivers of 
temperature, rainfall and wind. This is supported 
by findings of Auler et al., (2020) who noted that 

temperature and relative humidity deserve 
special attention in relation to the spread of 
COVID-19. The study observed that COVID-19 
transmission rate was initially favoured by 
higher mean temperatures (27.5 °C) as well as 
intermediate relative humidity (near 80%). 
 
The Indian Ocean Dipole (IOD) is characterized 
by differences in sea surface temperature (SST) 
anomaly between the western (50° E to 70° E, 10° 
S to 10° N) and eastern (90° E to 110° E, 10° S to 0° 
S) Indian Ocean (Palmer et al., 2023). IOD is a 

driver of rainfall variability at inter-annual scale. 
The positive IOD is designated to an SST 
anomaly difference of at least +0.4 °C for at least 
three months between the warmer west and 
cooler east, and it is linked to wetter short rains 
over Eastern Africa.  Future studies on the link 
between weather systems and COVID-19 would 
provide new insights. 
 
In Eastern Africa, the weather conditions vary 
depending on location and time of year and is 
characterized by distinct wet and dry seasons. 
The wet season typically occurs between March 
and May, during which rainfall is more frequent 
and intense (Omondi et al., 2013). Closer to the 

equator, the climate is typically equatorial, 
characterized by high temperatures year-round 
and minimal seasonal variation. However, 
altitude plays a significant role, with cooler 
temperatures at higher elevations (Muthama et 
al., 2008; Omondi et al., 2013; Palmer et al., 

2023).  Cooler temperatures are associated with 
elevated cases of COVID-19.  

The Inter-Tropical Convergence zone (ITCZ), is a 
belt of low pressure near the equator where trade 
winds from the northern and southern 
hemispheres converge. It plays a crucial role in 
determining the distribution of rainfall across 
tropical regions and hence COVID-19 cases as 

influenced by seasonality (Nicholson, 2018). Over 
Africa, the ITCZ’s north-south displacement 
corresponds to the movement of the rainy 
seasons. The Influence of ITCZ shows unique 
regional footprints on the continent (Omay et al., 

2023; Zaitchik, 2017). In eastern Africa (from 
southern Ethiopia to central Tanzania), there 
are two distinct rainy seasons: First Rainy Season 
(Long Rains) occurs between February and May. 
During this period, the ITCZ moves northward, 
bringing rain to countries like Kenya, Tanzania, 
and Ethiopia. Second Rainy Season (Short Rains) 
occurs between October and December. The 
ITCZ shifts southward during this time, affecting 
rainfall in the same region (Nicholson, 2018).  
This characteristic of ITCZ is thus expected to 
influence the dynamics of COVID-19 spread. 

Historically, summers leading up to El Niño 
winters tend to be hotter than average across 
parts of northern Africa (Gizaw and Gan, 
2017).  West Africa is particularly affected during 
El Niño events.  Increased risk of drought occurs 
in this region due to changes in weather patterns 
caused by El Niño. The warming phase of the El 
Niño Southern Oscillation leads to disruptions in 
trade winds, allowing warm water to spread 
eastward across the Pacific. This disruption 
affects rainfall patterns, and West Africa becomes 
more susceptible to drought and famine 
(Emmanuel, 2022; Gizaw and Gan, 2017). All 
these extreme weather event influence the 
prevalence of COVID-19 cases. 
 
The Madden–Julian Oscillation (MJO) is 
characterised by the eastward propagation of 
enhanced regional convective rainfall across the 
tropics. It is a driver of sub-seasonal rainfall 
variability over Eastern Africa, influencing both 
the long and short rains on a monthly basis 
(Palmer et al., 2023; Zaitchik, 2017). MJO phases 2 
– 4 are connected to large-scale convection in the 
Indian Ocean. This has been observed to lead to 
increased rainfall over east Africa highlands and 
westerly wind anomalies. This relationship is 
strongest in November, December, March and 
May, but tends to be weaker during October and 
April. The MJO phases 6 – 8 on the other hand are 
linked to wet conditions over low-lying coastal 
regions and depressed convective rainfall activity 
over Eastern Africa and the western Indian 
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Ocean (Palmer et al., 2023). The above two 

scenarios would favour spread of COVID-19. 
 
The South African region is located South of 15°S 
and has a subtropical climate. The climate of the 
region is influenced by various weather systems, 
including temperate and tropical weather 
systems (Zaitchik, 2017).  Most rainfall occurs 
during austral summer, that is, from December to 
February. In addition, the south western region 
experiences winter rainfall. During El Niño, 
drought tends to occur in southern Africa due to 
higher atmospheric pressure anomalies and 
weakened moisture transport from the Indian 
Ocean. La Niña tends to bring above-normal 
rainfall conditions. Southern Africa often 
experiences sinking air due to subtropical high-
pressure systems, which suppress thundercloud 
formations and rainfall (Mason, 2001; Zaitchik, 
2017). It is expected that sinking air would 
enhance concentration of COVID-19. The above 
scenario provides conducive environmental 
conditions for the spread of COVID-19. The 
above view is indeed supported by the number of 
cases documented in this study.  
 
Further, in arid regions variations in surface soil 
moisture can be significantly affected by changes 
in atmospheric humidity, with an important 
effect on wind erosion potential (Omay et al., 
2023). 
 
Air pollution meteorology 
The relationship between covid-19 cases and 
aerosol optical depth is supported by recent 
studies on air pollution- meteorology – covid-19 
nexus (Muthama, 2021; Shahzad et al., 2023). For 

instance, Studies have indicated that aerosols 
containing corona virus generated by sneezes 
and coughs are major routes for spread of virus 
(Srivastava, 2021). In addition, the link between 
air quality and weather parameters is well 
understood, for instance, Srivastava (2021) noted 
that local meteorology plays crucial role in the 
spread of corona virus and mortality. For 
instance, the study noted declining number of 
COVID-19 cases with rising temperature. It 
further observed that during lockdowns which 
were characterized by decreased human activity 
air quality improved. This led to significant 
reduction in gaseous and particulate pollutants 
and hence a reduction in cases of COVID-19 

(Srivastava, 2021). A comprehensive study on 
environmental elements and weather parameters 
in Turkey revealed that air quality and 
temperature significantly influence COVID-19 
deaths in Istanbul (Shahzad et al., 2023).  

In this study, inter-country heterogeneity in the 
relationship between environmental factors and 
COVID-19 was observed. This alludes to the 
partial contribution of localized factors that 
influence air pollution to driving the observed 
cases of COVID-19 in each country studied. Such 
factors may include urban – rural micro climate, 
aerosol load and air quality differentials 
(Muthama, N.J, 2021; Shahzad et al., 2023). 

 
Conclusion  

Unlike other studies, the present study analyses 
the association between national daily daytime 
temperature, night time temperature, daytime 
relative humidity, night time relative humidity, 
Ultraviolet index at noon and volumetric soil 
moisture within same day, 5 days, and 14 days of 
the case on COVID-19 cases using national data 
of five Africa countries. These represent four 
regions, namely: eastern Africa represented by 
Kenya and Ethiopia; northern Africa represented 
by Egypt; Western Africa represented by Ghana 
and Nigeria; and southern Africa represented by 
South Africa. Our study demonstrates the 
existence of high probability that weather and 
environmental factors contribute significantly at 
least in the emergence, early-stage transmission, 
and probably in its re-emergence in different 
countries in Africa. Ultraviolet radiation index 
shows the strongest correlation with COVID-19, 
followed by Daytime temperature, night time 
relative humidity, aerosol Optical depth and 
volumetric soil moisture in that order. Further, 
ultraviolet index depicts a non-linear relationship 
with COVID-19 cases. Further, it may be 
generally observed that night time temperatures 
favour COVID-19 transmission more than 
daytime temperatures. COVID-19 cases in 
Nigeria seem comparatively most sensitive to 
weather and environmental factors. However, 
inter-country heterogeneity in relationships is 
manifest and may be connected to the unique 
local environments in the countries studied. 
Researchers are encouraged to repeat this study 
in the near future to enhance the robustness of the 
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findings. Still, the results are compelling even 
though, in addition to weather and 
environmental conditions, several other factors 
are related to COVID-19 spread.   
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