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Abstract 
 
The ionospheric F2 layer is the essential layer in the propagation of high-frequency radio waves, and height 

of the peak electron density (hmF2) is one of the important parameter. However, ionosondes are not 

installed at every location on earth to allow for global measurements of hmF2, especially within the 

southern African region. This study therefore focuses on developing a regional model for predicting the 

hmF2 using Artificial Neural Network techniques. In this study, prediction model was developed using 

year, day of the year, time in 30 minutes intervals, Sunspot Number (SSN), Solar flux at 10.7 cm (F10.7), 

geomagnetic activity (Kp) and Averaged planetary Index (Ap), longitude, latitude and critical frequency 

(foF2) as the input. The hmF2 prediction of 2009 and 2014 obtained from proposed model its results during 

summer and winter was compared with AMTB-2013 and SHU-2015, which are recently parameters of the 

IRI-2020 model. The result showed that in both 2009 and 2014 the year of low solar activity and high solar 

activity respectively, ANN over perform other models with minimum RMSE and PRMSE values followed 

by SHU-2015 and finally AMTB-2013. Therefore, it can be concluded that the architecture and learning 

efficiency of ANN proposed model are as good as SHU-2015 with slightly difference between them. 

Although all models need some improvement to increase their accuracy. 

 

Introduction 

The ionosphere is an extremely non-linear system 
and an important part near- the earth space 
environment that changes with time and space 
and it is ionized by solar radiation (Cander et al., 

1998). The ionosphere contains several important 
parameters, including F2 layer height of the peak 
electron density (hmF2), which varies 
considerably due to multiple factors, including 
geophysical factors, solar factors and seasonal 
changes. The ionization rate and, in turn, the 

electron density in the F2 layer are influenced by 
the solar activity level, which is determined by 
sunspots numbers and solar flares. At different 
latitudes, solar heating and ionization vary due 
to the Earth's axial tilt and its orbit around the 
Sun. As a result, the F2 layer and other parts of 
the ionospheric structure experience seasonal 
variations  (Bothmer  and Daglis, 2007). The 
hmF2 is a critical parameter in ionospheric 
studies that plays a significant role in 
communication and navigation systems. 
Accurate prediction of hmF2 is essential for 
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various applications, including radio wave 
propagation modeling, satellite communication 

planning, and space weather monitoring.  

In order to analyze and predict the behavior of 
the hmF2 layer in the ionosphere, ranges of 
physical and empirical models are employed. 
Physical models of the ionosphere rely on 
simplifying assumptions and mathematical 
equations to simulate the underlying system. 
These assumptions may not capture all the 
complexities and nuances of real-world 
phenomena. Some physical based models 
include the Sheffield University Plasmasphere 
Ionosphere Model (SUPIM) (Bailey et al., 1997), 

the Global Assimilation of Ionospheric 
Measurements - Full Physics Model (GAIM-FP) 
(Schunk et al., 2004), Naval Research Laboratory's 
(NRL) SAMI3 (Huba et al., 2000) and Ionospheric 
code SAMI3 and the atmosphere/thermosphere 

code WACCM-X  (Huba  and Liu, 2020). 

Empirical models are based on large historical 
data sets that are often sampled irregularly over 
time and space (Field, 2018). This models use 
climatological ionospheric data from numerous 
sources to fit the ionospheric parameters to a 
particular set of control parameters. They don't 
necessitate a thorough comprehension of the 
physical processes that take place in the 
ionosphere. Global empirical models for the 
three-dimensional ionosphere that are frequently 
used include the International Reference 
Ionosphere (IRI) (Bilitza et al.,  2001, Bilitza et al., 
2008, Bilitza et al., 2017 and  Bilitza et al., 2021) and 
NeQuick (Leitinge et al., 2000, Radicella et al., 

2009). The accurate prediction of the ionospheric 
conditions is still a challenging task because of its 
complex variability due to several  factors such as 
solar activity, geomagnetic activity, seasonal 
variations and diurnal variations (Anderson et al., 

1998). Traditional empirical models and 
analytical approaches have inherent limitations 
in adequately capturing the intricate 
relationships between these influential variables 
and the resulting hmF2 values. Given the 
shortcomings of existing methods, there is a 
pressing need to develop alternative models that 
can better account for the complex interplay of 
these factors.  
 

In order to simulate complex, non-linear 
relationships between input and output 
variables, a promising technique has been 
discovered to be the Artificial Neural Network 
(ANN). ANN can manage the complicated and 
nonlinear physical variables of the environment. 
When compared to statistical approaches, it 
makes fewer assumptions and processes 
information quickly. Also, it  operates on the 
parallel massive machine principle based on the 
simplification of biological neurons  (Beale   et al., 

2010). Because of their capacity to imitate and 
replicate nonlinear events, ANNs have been 
employed in several studies to examine the 
behavior of the ionosphere. These include, Tulasi 
Ram et al., (2018), Gowtam  and Ram, (2017), Hu  
and Zhang (2018), Kim  et al., (2021) and Moon  et 
al., (2020).  

 

Gowtam  and Ram, (2017) built the Immune layer 
Artificial Neural Network (ANNIM) model, 
which is an upgraded ANN model capable of 
replicating variations in peak electron density 
(NmF2) and hmF2 across both time and space, as 
well as the increase in equatorial hmF2 that 
occurs after sunset because of the pre-reversal 
amplification of the zonal electric field.  Tulasi 
Ram et al. (2018) showed that during various 

solar activity times, the anticipated NmF2 and 
hmF2 display strong correlation with ground-
based digisonde data, demonstrating the ability 
of controlled simulations to distinguish between 
the impacts of solar irradiance and recurrent 
geomagnetic activity. Hu and Zhang (2018) 
developed a novel regional hmF2 forecast model 
for Australia using ionosonde data and the 
bidirectional Long Short-Term Memory (bi-
LSTM) technique. The performance of this model 
was compared to that of the AMTB-2013, SHU-
2015, ANN, and LSTM models, among other 
well-known models. According to the results, the 
model outperformed the previous four models in 
the first five hours. Kim et al. (2021) created a 

deep learning model for geomagnetic storms 
utilizing the new training data set, which 
included redesigning input parameters and 
hyper-parameters. They employed the hmF2 and 
foF2 parameters from the Jeju ionosonde 
(33.43°N, 126.30°E) as input parameters for the 
LSTM model. The results showed that the LSTM 
storm model outperformed the LSTM quiet 
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model, SAMI2, and IRI-2016 models during the 
geomagnetic storms. Moon et al. (2020) 

developed the LSTM model, a regional 
ionospheric model, to predict hourly hmF2 over 
the Jeju station (33.43°N, 126.30°E) for up to 24 
hours using a deep learning method to anticipate 
the F2 parameters. The outputs of the LSTM 
model and the IRI-2016 model were compared 
during geomagnetically active and inactive 
phases. It was discovered that the LSTM model 
performed best on calm days. During 
geomagnetic storm days, the IRI-2016 model beat 
the LSTM model, which they associated this with 

few training data available at those times. 

This research endeavor is particularly motivated 
by the uneven distribution of ionosondes, the 
instruments used to measure hmF2, across the 
globe, with a notable scarcity in the southern 
African region. Additionally, even at the 
available ionosonde stations in this region, there 
are significant gaps in the database due to 
infrastructural challenges, such as power outages 
and maintenance requirements. In light of these 
limitations and data gaps, the development of a 
regional model for hmF2 predictions using 
neural network techniques emerges as a 
promising solution. Neural networks possess the 
remarkable ability to learn and model complex, 
nonlinear relationships from data, making them 
well-suited for addressing the dynamic nature of 
the ionosphere. 
 
Materials and Methods 

Source of data 
In this work, data from ionosondes, specialized 
radar equipment that collects echoes from the 
ionosphere across a broad frequency band, were 
used as targets to the model. These ionosonde 
readings were taken from three ionosondes 
which were Grahamstown (33.32ºS, 26.50ºE), 
Madimbo (22.4ºS, 30.90ºE) and Louisvale (28.5ºS, 
21.2ºE) located in South Africa and cover a 
significant record from 2005 to April 2023. The 
data were taken in 30-minute interval, on daily 
basis and on quiet days in order to uncover 

intricate ionospheric processes.  

Identification of the input parameters of the 
model was carried out through searching 
different scientific papers and articles describing 
the factors that affect the hmF2. The factors that 

were identified were: year, day of the year, time 
in 30-minute intervals, sunspot number, Solar 
flux at 10.7cm (F10.7), longitude, latitude, 
horizontal wind speed, critical frequency (foF2), 
the planetary K-index (Kp) and the planetary A-
index (Ap)  (Tulasi Ram   et al., 2018,  Moon et al., 
2020, Tulunay et al., 2006 and 
Watthanasangmechai, 2012). The statistical 
approach was used to determine the correlations 
between the identified factors with the hmF2. 
Horizontal wind model 2014 and recorded F10.7 
solar flux and Kp index were obtained from 
Dominion Radio Astrophysical Observatory 
(DRAO) through (https://www.cadc-ccda.hia-
iha.nrc-cnrc.gc.ca/en/). Additionally, in order to 
strengthen the validity of this research, the data 
from the International Reference Ionosphere (IRI-
2020) model which are available at 
https://irimodel.org/ were compared with the 
results of the developed model. 
The following pair of function was used to define 
the parameters used as ANN inputs. 

𝑦𝑘 = 𝑓(∑ 𝑤𝑘
1
𝑘=1 𝑓(∑ (𝑥𝑖

𝑚
𝑖=1  × 𝑤𝑘𝑖) + 𝑏𝑘) + 𝑤𝑜)                                                  

 (1)                                                                    

In this equation, 𝑦𝑘  denotes the output of the 
neuron, 𝑓 denotes the activation function, m 

denotes the number of input parameters, 𝑥𝑖is the 
i-th input parameter, 𝑤𝑘𝑖 denotes the i-th synaptic 
weight, 𝑤𝑜 denotes the original synaptic weight, 

and 𝑏𝑘 denotes the bias.  

The developed model was trained using the 
Levenberg-Marquardt algorithm because it has 
high speed and is better suited for variety of 
problems than other common algorithms  
(Ahmed, 2018). A higher learning rate of 0.4 was 
used in training the model. It was used to speed 
up a training process, since, if it is small tends to 
slow and lengthy the training process and if it is 
too higher may result into the saturation of 
output or swing of output across the desired 
output (Zhou et al., 2022). Two stopping 

standards were employed during the training 
phase to prevent over-fitting of the models: a 
minimum training error and a maximum number 
of epochs, which were fixed at 0.00000001 and 
1000, respectively. Over-fitting degrades the 
generalization ability of the model in prediction 

(Gnana  and Deepa, 2013). 

https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/
https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/
https://irimodel.org/
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To design a suitable neural network architecture, 
five hmF2 prediction networks were trained by 
using thirteen years of the inputs data from 2005– 
2018, then tested by using data from January 2019 
to December 2022, and validated by data for 
January 2023 to April 2023. Combinations of 
inputs to design the best network was done by 
considering the statistical techniques such as 
correlation analysis and mutual information as 
suggested by  Hegland (2001). By systematically 
excluding or including specific inputs, the 
researchers can assess which variables have the 
greatest impact on the model's predictive 
performance. This helps identify the most 
important predictors and allows the model to 

focus on the key drivers of the target output. 

Network 1 was designed with the aim of 
determining the prediction capability of the 
combination of inputs of year, day of the year, 
time in 30 minute intervals, SSN, F10.7, foF2, 

horizontal wind speed, Kp and Ap.  

Network 2 was designed to determine if the 
combination of year, day of the year, time in 30 
minute intervals, SSN, F10.7, foF2, longitude and 
latitude, can be used to generate hmF2 prediction 

model.  

Network 3 was designed to determine if the 
combination of year, day of the year, time in 30 
minute intervals, SSN, F10.7, longitude, latitude, 
horizontal wind speed, foF2, Kp and Ap can be 
used to generate hmF2 prediction model.  

Network 4 was designed with the purpose of 
determining if the combination of year, day of the 
year, time in 30 minutes intervals, SSN, F10.7, 
longitude, latitude, horizontal wind speed, Kp 
and Ap, as inputs can produce a good result for 
hmF2 prediction model. 

Network 5 was trained by nine input parameters, 
which are Year, day of the year, time in 30 
minutes intervals, longitude, latitude, horizontal 

wind speed, foF2, Kp and Ap.  

The training of the neural network model 
involved simulating five different network 
architectures by systematically varying the 
number of neurons in the hidden layer from 1 to 
100 for each network. In order to determine if the 
model is appropriate, the Root Mean Squared 
Error (RMSE) and coefficient of determination 

(R2) were employed which are given by equations 

(1) and (2) respectively; 

2

1

1 *( )
n

i

RMSE
i in

y y


  
    

     (2)       

 

 

2
*

2 1

2
*

1

n

i i

i

i m

y y

R

y y





 






    

     (3) 

Where 𝑦𝑖 is actual height value, 𝑦𝑖
∗ is predicted 

height value, 𝑦𝑚
∗  represents average height and 𝑛 

represents number of samples. Plots were used to 
compare the actual value and the predicted 
value. This demonstrated how well anticipated 

values match real values.  

To test the suitability of the neural network in 
predicting hmF2 compared to the IRI-2020 
model, the predicted hmF2 values from ANN 
were compared to hmF2 values from the AMTB-
2013 and SHU-2015 models, which are available 
in the IRI-2020 model. The data used included the 
2009 and 2014 data from the IRI-2020 model 
options, as well as ionosonde data from the 
Grahamstown station. The year 2009 represented 
a period of minimum solar activity, while 2014 
represented a year of maximum solar activity. 
For these selected years, two seasons were 
analyzed - summer and winter. In the southern 
hemisphere where South Africa is located, the 
summer months are December, January, and 
February, while the winter months are June, July, 

and August. 

 
 
Results 

This section presents the results of the five 
trained neural network architectures that were 
developed for the purpose of predicting hmF2. 
The goal is to evaluate the performance of these 
five networks in order to identify the one that 
provides the most optimal results. 
 
Figure 1 shows the performance of model using 
all five networks based on RMSE. It can be 
observed from the figure that, there is a continual 
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random decrease of RMSE, with the increase 
number of neurons in the hidden layer. As 
evident from the figure, network 2 exhibited the 
best performance among the five networks, as its 
RMSE values were consistently lower than those 
of the other four networks. This suggests that 
network 2 provided the closest agreement 
between the measured values and the values 

estimated by the neural network model. Network 
2 portrayed a minimum prediction error at 60 
neurons in the hidden layer with the RMSE of 
23.197 km. Beyond 60 neurons, RMSE slightly 
increased, indicating the increase of prediction 
error of the model as the number of neurons 
increases beyond 60. 

 
  Figure 1 

Performance of the five networks in terms of RMSE 

 

 

Performance of network 2 was based on the fact 
that, the Kp and Ap indices may not have a strong 
direct relationship with hmF2 and could have 
introduced more noise or complexity to the 
model. By excluding these parameters, network 2 
was able to focus on the more relevant inputs 
without being potentially hindered by the 
weaker predictive power of the Kp and Ap 
indices (Gulyaeva  and Arikan, 2021; Martyshko  
and Perevalova 2011). 

 

On the other hand, network 4 presented the 
poorest results with higher RMSE, where the 
minimum prediction error of this network occurs 
at 80 neurons with RMSE=26.718 km. which may 
have been contributed by the exclusion of hmF2 
parameter as an input parameter. The foF2 has a 
strong direct correlation with hmF2 and its 

exclusion can significantly hinder the model's 
predictive capability (Zeng   et al., 2016). 

Therefore, the network with input data; year, day 
of the year, time in 30 minute intervals, SSN, 
F10.7, longitude, latitude and critical frequency 
(foF2), which has 60 hidden neurons is 
considered the best model architecture for hmF2 
prediction. The inclusion of foF2 as an input 
parameter is crucial, as it has a strong direct 
correlation with hmF2 and its inclusion can 
significantly improve the model's predictive 
capability. The other input parameters, such as 
year, day of the year, time, SSN, F10.7, longitude, 
and latitude, provide relevant information for the 
hmF2 prediction without introducing 
redundancy. The 60 hidden neurons in the model 
architecture appear to provide an optimal 
balance between model complexity and 
predictive performance, avoiding the potential 
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issues of overfitting or poor generalization that 

can arise from excessively complex models. 

The model configuration of Network 2, which has 
the best network architecture, demonstrates a 
high level of performance in terms of R2 and R as 
shown by Figure 2. The result showed that at 
optimal hidden neurons the value of R2 and R 
were 0.80075 and 0.8948 respectively. According 
to Hinkle  et al. (2003), if R2 and R lies between 0.1 

and 0.3, it indicates a weak correlation, between 
0.4 and 0.6 it indicates a moderate correlation and 
when it lies between 0.7 and 1 it indicates a strong 
correlation. Therefore, the values of R2 and R 
from the model indicated a strong correlation 
showing a good agreement between predicted 
and actual peak height of electron density 
(hmF2). This suggests that the model is highly 
effective in capturing the relationship between 
the input parameters and the target hmF2 

variable. 

Figure 2 

Performance results of model based on R2 and R 

 

 

The information presented in Figure 3 suggests 
that the model's predicted hmF2 values closely 
match the actual hmF2 values in the test dataset, 
with only minor variations between the two. 
Specifically, the figure shows that the predicted 
hmF2 values closely track the changes and 
fluctuations observed in the actual hmF2 test 
data. This indicates that the model has effectively 
captured the underlying relationships and 
dynamics that govern the behavior of the hmF2 

parameter. The small differences or variations 
between the predicted and actual hmF2 values 
suggest that the model is able to respond and 
adapt to the changes in the hmF2 parameter. This 
level of responsiveness and accurate prediction, 
even in the face of fluctuations, demonstrates the 
model's effectiveness in modeling the complex 
ionospheric processes that influence the hmF2 

parameter. 
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Figure 3 

Predicted hmF2 by model as compared to the test data set  

 

 
This result agrees with the study of Tulasi Ram  et 
al., (2018) who uses the improved two-

dimensional Artificial Neural Network-Based 
Ionospheric Model (ANNIM) to predict the peak 
electron density (hmF2). According to their 
results, the RMSE for 2002, 2009, 2014, and 2016 
were 29 km, 25 km, 31 km and 33 km respectively. 
Gowtam and Ram (2017) used an Artificial 
Neural Network-Based Ionospheric Model 
(ANNIM) to predict NmF2 and hmF2 using long-
term data set of formosat-3/cosmic Radio 
occultation observations and the RMSE obtained 
was 27.9 km with R = 0.77. The improved 
ANNIM well captured the temporal (local time, 
seasonal, and solar cycle epoch) and spatial 
(latitude and longitude) variations of F2-layer 

peak electron density (hmF2).  

Assessing predicting efficient of the developed 
model in comparison with IRI 2020 model 

To assess the predicting efficient of the developed 
model in comparison with the widely used IRI 
2020 model, the two IRI 2020 model options; 
AMTB-2013 and SHU2015, were used. The data 
used included the 2009 and 2014 data from the 
IRI-2020 model options, as well as ionosonde 
data from the Grahamstown station. The year 
2009 represented a period of minimum solar 
activity, while 2014 represented a year of 
maximum solar activity. For these selected years, 
two seasons were analyzed - summer and winter. 
In the southern hemisphere where South Africa 
is located, the summer months are December, 
January, and February, while the winter months 
are June, July, and August. The results are 

presented in Figures 4 and 5. 
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Figure 4 

Observed hmF2 compared with ANN, AMTB-2013 and SHU-2015 hmF2 predictions for (a) January 2009 (b) 
February 2009 (c) December 2009 (d) June 2009 (e) July 2009 (f) August 2009 
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Figure 4(a) illustrates the hmF2 predictions for 
January 2009, displaying a positive bias in all 
three model options with overestimation of 
actual values. The RMSE of the ANN is 11.72 km, 
whereas the RMSE of AMTB-2013 and SHU-2015 
are 18.87 km and 15.63 km, respectively. The 
ANN perform better compared to AMTB-2013 
and SHU-2015. Even though it is summer in 
South Africa in January, this result suggest that 
ANN shows good adaptability to high 
temperature seasons compare to AMT-2013 and 

SHU-2015. 

Figure 4(b) shows the hmF2 predictions for 
February 2009. The result showed that, all three 
models significantly manage to predict hmF2 
values for February, with the ANN model 
demonstrating higher accuracy compared to the 
other models. However, significant differences 
emerge in their predictive accuracy. While 
AMTB-2013 had RMSE=17.74 km, the ANN and 
SHU-2015 display better results with the RMSE 
values of 10.09 km and 13.55 km respectively. 
ANN performed better compared to AMTB-2013 
and SHU-2015. All models were managed to 
capture the change in hmF2 values since the 
temperature was decreasing at ending of summer 

seasons.  

Figure 4(c) shows the hmF2 predictions for 
December 2009, which was the start of the 
summer season. While SHU-2015 and AMTB-
2013 displayed RMSE of =14.81 km and 10.93 km 
respectively, ANN outperformed them, with the 
lowest RMSE of 9.65 km suggesting superior and 
accuracy, with a moderate overestimation bias. 
Due to hmF2 fluctuation caused by summer 
temperature SHU-2015, and ANN managed to 
capture the changes, this lead to lower RMSE 
values compare to AMTB-2013. These results 
show that ANN responded effectively in season 

of high temperature. 

Figure 4(d) illustrates the hmF2 predictions for 
June 2009. All the three models showed an 
overestimation of actual values. The RMSE of the 
AMTB-2013 in predicting hmF2 was 16.49 km, 
whereas that of SHU-2015 and ANN were 10.06 
km, and 12.35 km respectively. This result 
showed that ANN responded effectively than 
AMTB-2013 and SHU-2015 since it managed to 

capture the fluctuations of hmF2 in response to 

change in seasons. 

Figure 4(e) illustrates the hmF2 predictions for 
July 2009. The RMSE of the ANN was 11.08 km, 
whereas that of AMTB-2013 and SHU-2015 were 
19.48 km and 14.08 km, respectively. The ANN 
manage to capture the fluctuation of hmF2 values 
compared to AMTB-2013 and SHU-2015. 
Compared to June, the AMTB and SHU-2015 
showed the increase in their RMSE values, 
showing the decrease in the accuracy, while 
ANN RMSE value decreased from 12.35 km in 
June to 11.08 km in July, showing an increase in 
the model accuracy. 

Figure 4(f) illustrates the hmF2 predictions for 
August 2009. The RMSE of the ANN are 14.32 
km, whereas the RMSE of AMTB-2013 and SHU-
2015 are 17.30 km and 15.86 km, respectively. By 
comparing with June and July 2009, the models 
overestimated actual values due to positive 
biases. This implies that, these models tend to 
overemphasize particular input parameters such 
SSN during the prediction process. This shows 
how complicated the ionosphere is and how 
difficult it is to adequately capture its activity in 
predicting models (Pesnell, 2008). It also implies 
that AMTB-2013 and SHU-2015 models need to 
be improved or refined in order to more 
accurately represent the physics regulating 
ionospheric variability, particularly during times 
of decreased activity like 2009. 
Figure 5(a) illustrates the hmF2 predictions for 
January 2014, the year of high solar activity 
where AMTB-2013, SHU-2015 and ANN all 
displaying a positive bias with SHU-2015 tend to 
overestimation of actual values. Significantly, the 
RMSE of the ANN is 9.73 km, whereas the RMSE 
of AMTB-2013 and SHU-2015 are 15.67 km and 
12.99 km, respectively. ANN had lower value of 
RMSE than AMTB-2013 and SHU-2015, implying 
that, the ANN model managed to show high 
accuracy in high solar activity during the summer 
seasons. 
Figure 5(b) illustrates the hmF2 predictions for 
February 2014, where AMTB-2013 and SHU-2015 
displaying a positive bias with overestimation of 
actual values, while ANN display negative bias 
by underestimating the actual values. The RMSE 
of the ANN is 10.14 km, whereas the RMSE of 
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AMTB-2013 and SHU-2015 are 14.62 km and 
12.20 km, respectively. ANN displayed less 

RMSE, showing more accuracy in predicting 

hmF2 compared to AMTB-2013 and SHU-2015. 

Figure 5 

Observed hmF2 compared with ANN, AMTB-2013 and SHU-2015 hmF2 predictions for (a) January 2014 (b) 
February 2014(c) December 2014 (d) June 2014 (e) July 2014 (f) August 2014 

 
 

 
 

Figure 5(c) illustrates the hmF2 predictions for 
December 2014. The RMSE of the ANN is11.27 
km, whereas the RMSE of AMTB-2013 and SHU-
2015 are 14.69 km and 12.29 km, respectively. The 
ANN model exhibited a negative bias, indicating 
that it tends to underestimate the true hmF2 
values. But in contrast to January and February, 
its RMSE for December is slightly higher, 

suggesting that the ANN in the beginning of 
summer does not manage well the change in the 
seasonal temperature hence it still need some 
improvement to adapt with the change the 
seasons.  
 
Figure 5(d) illustrates the hmF2 predictions for 
June 2014. Among the models, the ANN model 
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has the lower RMSE of 11.14 km, indicating good 
prediction. The RMSE of AMTB-2013 and SHU-
2015 were 19.05 km and 14.6 km, respectively. 
Comparing to June 2009, where ANN had a 
RMSE of 12.35 km, there is slight improvement in 
the model for capturing the hmF2 values, 
demonstrating its ability to capture ionospheric 
dynamics even in high solar activity periods. 
 
Figure 5(e) illustrates the hmF2 predictions for 
July 2014. The RMSE of the ANN was 13.79 km, 
whereas the RMSE of AMTB-2013 and SHU-2015 
were 18.35 km and 14.52 km, respectively. 
Compared to June 2014, the ANN model RMSE 
appears to be slightly higher, suggesting decrease 
in predictive accuracy during this month. On the 
other hand, both AMTB-2013 and SHU-2015 
models demonstrated RMSE values of 19.05 km 
and 14.02 km, respectively, in July 2014. These 
results highlight how crucial it is to continuously 
validate and improve modeling techniques in 
order to improve their capacity to precisely 
represent ionospheric dynamics, especially in 
light of fluctuating solar activity levels. 
 
Figure 5(f) illustrates the hmF2 predictions for 
August 2014. The RMSE of the ANN was 9.02 km, 
whereas the RMSE of AMTB-2013 and SHU-2015 
were 14.83 km and 11.10 km, respectively. ANN 
continued to show lower RMSE values compared 
to AMTB-2013 and SHU-2015 indicating higher 
overall accuracy. The AMTB-2013 and SHU-2015 
model's performance seems to improve accuracy 
with decrease in RMSE from June to August, 
which indicates a greater adaptivity from 
observed values. The dynamic character of 
ionospheric modeling and the possible influence 
of temporal changes in ionosphere circumstances 
on model performance are highlighted by these 
variations in RMSE values (Huang and Reinisch, 
2006).  The RMSE for 2009 and 2014 for all models 
during the summer for the month of December, 
January and February ANN display the values of 
9.65 km, 11.72 km and 10.09 km respectively 
while AMTB-2013 values were 14.83 km, 18.87 
km, and 17.74 km respectively and SHU-2015 
values  were 10.93 km, 15.63 km, and 13.55 km 
during winter for the month June, July and 
August ANN display the values of 10.06 km, 
11.08 km and 14.32 km, respectively while 
AMTB-2013 values were 16.49 km, 17.48 km and 
17.30 km respectively and SHU-2015 values  were 

12.35 km, 14.80 km, and 15.86 km.ANN over 
perform other models with minimum RMSE 
values followed by SHU-2015 and finally AMTB-
2013. Again in 2014 the year of high solar Activity 
during the summer for the month of December, 
January and February ANN display the values of 
11.27 km, 9.73 km and 10.14 km respectively 
while AMTB-2013 values were 14.69 km, 15.67 
km, and 14.62 km respectively and SHU-2015 
values  were 12.20 km, 12.29 km, and 11.50 km 
during winter for the month June, July and 
August ANN display the values of 11.14 km, 
13.79  km and 9.02 km, respectively while AMTB-
2013 values were 19.05 km, 18.35 km and 14.83 
km respectively and SHU-2015 values  were 14.60 
km, 14.52 km, and 11.10 km. ANN  over perform 
other models with minimum RMSE values 
followed by SHU-2015 and finally AMTB-2013. 
 
Discussion 

The capability of ANN to predict hmF2 has been 
achieved by other researchers globally, such as 
Gowtam  and Ram (2017),  developed an artificial 
neural network-based two-dimensional 
ionospheric model (ANNIM) to predict the 
ionospheric hmF2 using the long-term (2006–
2015) and global data of F3/C radio occultation 
observations. The linear regression coefficients 
between the ANNIM results and actual F3/C 
data were 0.77 and the RMSE was 27.9 km for 

hmF2. 

Habarulema  et al. (2021) developed a global 3-D 

electron density reconstruction model based on 
radio occultation data and neural networks for 
predicting the foF2 and hmF2. The result showed 
the IRI 2016 model’s performance was superior in 
all longitude sectors compared to 3D-NN model 
developed. The main reason for this is that the 
hmF2 option within the IRI 2016 that we have 
compared with was developed based on a 
combination of COSMIC and ionosonde data  
(Shubin, 2015). It is thus expected that its 
performance in estimating ionosonde hmF2 data 
will be greater than a model which used only 
COSMIC dataset. the developed 3D-NN model 
was mostly accurate in estimating ionosonde 
foF2 than the IRI 2016 model in the Europe, 
African and American sectors while the IRI 2016 
model was found to be more accurate in the 

Asian sector. 
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Moon  et al. (2020)  develop a regional ionospheric 

model to predict hourly hmF2s over the Jeju 
station (33.43°N, 126.30°E) for up to 24 hours by 
using a deep learning method. To evaluate the 
model performance, root mean square error 
(RMSE) and the correlation coefficient (CC) were 
used as the performance skill scores between the 
model prediction and the measurement during 
the 338 days of 2017–2018. hmF2 model, having 
41 hidden neurons and 24 batch sizes, preformed 
with an RMSE of 23.8 km and a CC of 0.80. The 
LSTM model results were compared with the 
results of the TIE-GCM and the IRI-2016 model 
for geomagnetically quiet and active periods. 
When the RMSEs of the hmF2 predictions were 
compared, the percentage improvements of the 
LSTM model were 45% more than those of the 

other models during geomagnetically quiet days. 

Tulasi Ram (2018)  developed ANNIM by 
assimilating additional ionospheric data from 
CHAMP, GRACE RO, worldwide ground-based 
Digisonde observations, and by using a modified 
spatial gridding approach based on the magnetic 
dip latitudes. The improved ANNIM better 
reproduces the spatial and temporal variations of 
hmF2, including the post sunset enhancement in 
equatorial hmF2 associated with the pre-reversal 
enhancement in the zonal electric field. The 
comparisons of hmF2 prediction by ANNIM and 
IRI-2016 prediction values with the ground-
based Digisonde observations over Jicamarca 
showed that, in 2002 the RMSE values were 29 
km and 36 km with regression coefficients of 0.89 
and 0.84 respectively. In their study the result 
obtain in 2009 the RMSE values were 25 km and 
32 km with regression coefficients of 0.81 and 0.72 
respectively. In 2014, the RMSE values were 31 
km and 43 km with regression coefficients of 0.91 
and 0.90 respectively. In 2016 the RMSE values 
were 33 km and 35 km with the regression 
coefficients of 0.85 and 0.84 respectively. 
 
By comparing the result obtained from other 
studies and the ANN performance it can be 
conclude that the proposed ANN model can be 
used to predict hmF2 layer for South Africa 
region.  
 
 
 

Conclusion 

The developed hmF2 prediction model based on 
ANN was able to detect the non-linear 
relationship that exists between input parameters 
and hmF2. It managed to develop a mapping 
between inputs data with the desired hmF2. Also, 
the model showed high degree of adaptability 
and consistence despite of high fluctuation of 
hmF2. For this reason, a model based on ANN is 
established as an appropriate tool for predicting 
hmF2 for Grahamstown, Madimbo and 
Louisvale ionosondes in South Africa. The RMSE 
values obtained by ANN exhibit good linear 
correlations with the ground-based ionosondes 
data during all the years. Further, the RMSE 
values in ANN are convincingly for predictions 
of hmF2. Therefore, from the comparisons of 
ANN, AMTB-2013, and SHU-2015 with the 
ground-based ionosondes observations, it can be 
concluded that the learning efficiency of the 
above ANN architecture is good, and the ANN 
predictions are as good as SHU-2015 with the 
slightly better difference by the ANN. This study 
concentrated on developing the hmF2 model for 
South Africa using the ANN technique. 
However, this study may be extended to other 
regions of Africa for predicting hmF2 and other 
ionospheric parameters. In this study, a data set 
of eighteen years was used. Therefore, in future, 
further studies may be conducted by using more 
long-period data set and other ionosondes in the 
African region to ensure a more accurate 
prediction of ionospheric parameters.  
 
Recommendation 

This study focused on developing an ANN 
model for predicting the hmF2 parameter 
specifically for the South African region. 
However, the potential of this approach could be 
extended to other regions across Africa for 
forecasting hmF2 as well as other ionospheric 
parameters. 
In this particular study, a dataset spanning 
eighteen years was utilized. Moving forward, 
future research in this area may benefit from 
incorporating an even longer-duration dataset 
and incorporating data from additional 
ionosondes located throughout the African 
continent. This expanded data coverage could 
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lead to further improvements in the accuracy of 
predicting various ionospheric parameters. 
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