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Abstract 
 
The time-dependent frequency distribution of a gamma photon emitted without recoil by an excited source 

nucleus is calculated; the emitted photon is submitted to nuclear quasi-resonant scattering in an absorber 

and recorded by a detector. The problem is formulated for an arbitrary number of quasi-resonant nuclei in 

the absorber, including both radiative decay (decay by means of gamma radiation) and decay by electron 

conversion (decay where the nuclear de-excitation energy is transmitted directly to an atomic electron). 

The problem of multiple scattering is treated by means of the so-called coherent path model developed 

years ago. The properties of the radiation leaving the absorber under these conditions are complex. The 

calculated probabilities of finding a gamma photon thus emitted as a function of frequency show a rich 

structure, with among others, maxima and minima that vary with time. The frequency distribution changes 

continuously as a function of time. For times long compared to the nuclear mean life of the excited state, 

the envelop of the frequency distribution resembles a Lorentz distribution, the details show some 

oscillatory behaviour as well as an asymmetry with respect to the nuclear frequency in the case of quasi-

resonance between the source and the absorber nuclei. If the source and absorber nuclei are in exact 

resonance, the frequency distribution is symmetric but the oscillatory behaviour is still present. The 

frequency distribution is determined by the source nucleus as well as by the quasi-resonant absorber nuclei, 

hence by the multiple scattering processes. The model presented can be used to calculate analytically the 

properties of the transmitted gamma radiation for any number of absorber nuclei, although the simulation 

of the results will obviously necessitate some tedious computer work. 

 

Introduction 

In an earlier paper (Hoy and Odeurs, 2012) the 
frequency distribution of a gamma photon was 
studied when an excited nucleus decays by 
emitting gamma radiation. It was reported that 

the frequency distribution changes with time to 
reach its limit form when the time is much longer 
than the average lifetime of the excited nuclear 
state. This limiting form is the well-known 
Lorentz distribution, concentrated about a central 
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frequency and having a width at half maximum 
equal to the natural linewidth.  

In this paper the frequency distribution is studied 
in the case where the photon emitted by a source 
nucleus undergoes multiple scatterings from 
quasi-resonant nuclei in an absorber, where the 
emission and absorption of gamma rays without 
recoil, called the Mössbauer Effect (Greenwood 
and Gibb, 1971) was considered.  

The problem is formulated for an arbitrary 
number of quasi-resonant nuclei in the absorber, 
including both radiative decay i.e. decay by 
means of gamma radiation and decay by electron 
conversion where, the nuclear de-excitation 
energy is transmitted directly without 
production of a gamma photon to an atomic 
electron (Greenwood and Gibb, 1971). To make 
the calculations as well as the interpretation 
somewhat more transparent, the problem of 
multiple scattering by two nuclei in the absorber 
will be considered, although the problem can be 
solved for the general case, leading to 
exceedingly long and rather cumbersome 
expressions for large numbers of scattering 
nuclei. 

In Section 3 the frequency distribution of the 
scattered gamma radiation is investigated in the 
(slightly) off-resonance case as well for the exact 
resonant condition.  

Materials and Methods 

The following setup is considered: a 
polycrystalline absorber containing resonant 
nuclei, all in the ground state (in this case the 
stable ground state of 57Fe, having a natural 
abundance of 2.12%), is placed between a source 
nucleus, in an excited state. In this case, the first 
excited state of 57Fe, which is at 14.4 keV above 

the stable ground state of 57Fe, Figure 2. In an 

actual experiment a γ-ray detector would be 
mounted behind the absorber to register and 

analyse the transmitted gamma radiation.  

A forward scattering, i.e., the propagation 
direction of the gamma radiation is defined by a 
straight line, chosen to be the x-axis, from the 
source nucleus to the centre of the detector whose 
aperture is assumed to be sufficiently small, 
Figure 1. In the third sub-section of section 2 a 
more thorough analysis will be shown with 
respect to this forward propagation direction. 

 

Figure 1 

Scheme of multiple scattering 

 

When gamma radiation emitted by the source 
interacts with the resonant nuclei of the absorber, 
its intensity versus time can be recorded by the 
detector. The number N of nuclei encountered 

depends directly on the thickness of the absorber 
(Hoy, 1997). At time 𝑡 = 0, only the source 
nucleus is excited. The problem of determining 
this initial time is discussed in the fourth sub-
Section of section 2. 

In Figure 1, multiple scattering processes are 
represented for the case of three absorber nuclei 

as per the setup used in this article. When a 
photon is recorded by the detector, there is no 
possible way to know which path has been taken 
by the photon emitted by the source nucleus. 
According a fundamental principle of Quantum 
Mechanics, all scattering amplitudes have to be 
considered and the total detection probability for 
the scattered photon will be proportional to the 
absolute value of the square of the total 
amplitude, which is the sum of all possible 
scattering amplitudes. Hoy (1997) has shown this 
first for a radioactive source and a resonant 
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absorber. Hoy et al. (2001) have shown this in 

detail for synchrotron radiation interacting with 
quasi-resonant absorber nuclei. This gives rise to 
interferences, constructive and destructive, 
between all possible amplitudes. The presence of 

these interferences is crucial in understanding the 
properties of the transmitted gamma radiation. 

 

Figure 2 

Decay scheme of 57Co/57Fe, showing the relevant nuclear states 

 

 

The number of scattering nuclei N has been 

modelled by means of the following equation (1), 
(Hoy, 1997):  

𝑁 =
𝛽 × 𝛤

2𝑓 × 𝛤𝑟
                                                                (1) 

where 𝛤 is the total linewidth, 𝛤𝑟 the radiative 
linewidth, 𝛽 the resonant nuclear thickness 
parameter (effective thickness) defined by 
equation (2) (Greenwood and Gibb, 1971): 

𝛽 = 𝑁𝑜𝑓𝜎𝑜𝑑                                                         (2) 

with 𝑁𝑜 the number of resonant nuclei per cubic 
centimetre, 𝑓 the recoil-free fraction (this is the 
probability that a nucleus will emit or absorb a 
gamma photon without recoil, so it is the 
Mössbauer fraction (Greenwood and Gibb, 
1971)), 𝜎𝑜 is the maximum effective cross-section 
evaluated at resonance, and d is the thickness of 

the sample (the absorber). In general the value of 
N, defined by equation (1), will not be an integer. 
It is implicitly understood that the value for N is 

the integer closest to the value of the right-hand 
side of equation (1). 

As previously cited (Hoy, 1997; Hoy et al., 2001), 
the complete quantum system is considered 

consisting of the source nucleus, the absorber 
nuclei, the gamma radiation and the conversion 
electrons. Before proceeding to the equations 
describing this system, it is worth digressing a 
little on the process of the production of a 
conversion electron, also called internal 
conversion. 

The process of producing a conversion electron 
(internal conversion of a nuclear transition) 

An excited nuclear state, spontaneously decaying 
to a less excited (often stable) state by 
electromagnetic interaction, has two different 
possibilities.  

The first possibility is the emission of a gamma 
photon, which can therefore be easily detected 
using standard nuclear detection techniques. 
This process is characterised by a constant, called 
the radiative constant  𝛤𝑟, which is directly related 
to the probability of decay through the 
production of a gamma photon.  

The second possibility, called the internal 
conversion, is the direct transition from the 
nuclear excited state to the ground state without 
the production of an actual gamma photon. So 
the excited nuclear energy is directly transferred 
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to an atomic electron (from an inner electronic 
shell) belonging to the nucleus in question. This 
electron, called a conversion electron, can 
therefore be ejected with a certain kinetic energy, 
which is the difference of the total available 
nuclear energy and the atomic binding energy of 
the ejected electron. In the case of 57Fe this energy 
is of the order of several keV. In principle the 
properties of this conversion electron can be 
measured. This process is characterized by a 
constant 𝛤𝑐, characterizing the decay probability 
of the nucleus through electron conversion.  

The total decay constant 𝛤, with respect to the 
considered unstable nuclear level, is the sum of 
the two decay constants: 𝛤 = 𝛤𝑟 + 𝛤𝑐. For the first 
excited state of 57Fe, having a half-life of 98 𝑛𝑠, the 
internal conversion process is about nine time 
more probable than the process of radiative 
decay (Greenwood and Gibb, 1971).  

It can be mentioned at this stage that, although 
the majority of Mössbauer spectroscopy 
experiments has been based on the detection of 
transmitted gamma radiation, a non-negligible 
part is performed on a set-up based on the 
detection of conversion electrons (Greenwood 
and Gibb, 1971). This technique, called 
Conversion Electron Mössbauer Spectroscopy 
(CEMS), is particularly useful when the electron 
conversion coefficient is high and for the study of 
specific properties such as the investigation of 
nuclear sites situated close the surface of a solid-
state material in which they are embedded 
(Barancira et al., 1996). 

Basic equations 

The evolution of the complete quantum system 
defined (Hoy, 1997; Odeurs et al., 2000; Hoy et al., 
2001, Odeurs and Hoy, 2006; Havyarimana et al., 

2021) is described by the familiar Schrödinger 
equation in time domain: 

iℏ
𝑑|𝜓(𝑡)〉

𝑑𝑡
= 𝐻|𝜓(𝑡)〉                                               (3) 

The state vector |𝜓(𝑡)〉 of the complete quantum 
system contains all information. H is the total 

hamiltonian of the complete system, which will 
be determined below.  

The hamiltonian of the system is divided into two 
parts. First the unperturbed hamiltonian, 𝐻0, 
corresponding to the nuclear states, the free 

radiation field, taken as plane waves, and the 
conversion electrons. The second part of the total 
hamiltonian, 𝐻𝑖𝑛𝑡, describes the interactions 
between the nuclei, the electromagnetic field 
associated to the gamma photons and the 
conversion electrons. 𝐻𝑖𝑛𝑡 describes the 
transitions between the eigenstates of 𝐻0 by 
allowing the nuclei to absorb and emit gamma 
radiation or conversion electrons. The total 
hamiltonian 𝐻, is of course the sum of 𝐻0 and 
𝐻𝑖𝑛𝑡. 

The entire system seems to be relatively 
unmanageable but it will later become clear that 
a suitable (Fourier) transformation makes the 
structure more transparent. 

In the standard approach the state of the system, 
|𝜓(𝑡)〉, can be expressed by equation (4). 

|𝜓(𝑡)〉 = ∑𝑎𝑝(𝑡)𝑒
−𝑖(

𝐸𝑝𝑡

ℏ
)
|𝜑𝑝〉

𝑝

                           (4) 

where {|𝜑𝑝〉} is the ensemble of all eigenstates of 

𝐻0. The state |𝜑𝑝〉 is associated to the energy Ep. 

Solving the Schrodinger equation in the usual 
way, one arrives at a set of coupled differential 
equations relating the coefficients 𝑎𝑝(𝑡): 

𝑖ℏ
𝑑𝑎𝑝(𝑡)

𝑑𝑡

= ∑𝑎𝑚(𝑡)𝑒𝑖(𝜔𝑝−𝜔𝑚)𝑡|𝜑𝑝〉⟨𝜑𝑝|𝐻|𝜑𝑚⟩

𝑚

+ 𝑖ℏ𝛿𝑝𝑙𝛿(𝑡)                                                               (5) 

The matrix element ⟨𝜑𝑝|𝐻|𝜑𝑚⟩, which can be 

written as 𝐻𝑝𝑚, describes the transition between 

the states |𝜑𝑚〉 and |𝜑𝑝〉. Obviously, the 

unperturbed part of the hamiltonian, 𝐻0, does not 
induce transitions between two eigenstates of 𝐻0. 
Therefore, although the total hamiltonian, H, in 

equation (5) is maintained, only the perturbation, 
given by 𝐻𝑖𝑛𝑡, will produce non-zero matrix 
elements in equation (5). 

The Kronecker delta and the delta function on the 
right-hand side in (5) are needed (Heitler, 1954) 
to denote that at time 𝑡 = 0 the system is in the 
state where 𝑝 = 𝑙 (i.e. for this case only the source 
nucleus is excited). In the fourth sub-section of 
section 2 a short digression is given on the 
experimental determination of the “initial time” 
of the system at 𝑡 = 0. 
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With Heitler (Heitler, 1954), a form of Fourier 
transformation 𝐴𝑚(𝜔) for the amplitude 𝑎𝑚(𝑡) 
can be introduced: 

𝑎𝑚(𝑡) = −
1

2𝜋𝑖
∫ 𝐴𝑚(𝜔)𝑒𝑖(𝜔𝑚−𝜔)𝑡

∞

−∞

𝑑𝜔            (6) 

The substitution of expression (6) in equation (5) 
leads (Heitler, 1954) to a system of coupled linear 
equations for the 𝐴𝑚(𝜔). In such a way, the 
coupled differential equations expressed by (5) 
are replaced by the set of linear coupled 
equations (7) – (12), which is an appreciable 
simplification for the analysis of the whole 
problem. It should be mentioned at this stage that 
the variable t is now replaced by the new variable 

𝜔, having the dimension of 𝑠−1, which is, 
obviously, the complete idea of Fourier analysis.  

In Havyarimana et al. (2022), the method has been 

used to study the nuclear radiation field and the 
nuclear excitation inside a resonant absorber, 
leading to the concept of nuclear polariton, i.e. 
the combined system consisting of gamma 
photons and the resonant nuclei in the absorber 
that interact with each other. More details of the 
mathematical technique are also given in 
(Havyarimana et al., 2022). 

There are five possible amplitudes for this 

problem: 

 𝐴𝑚(𝜔): the source nucleus, situated at the origin 
of the coordinates system, is excited and its 
energy (the excited state energy) is given by ℏ𝜔𝑜, 
where 𝜔𝑜 is the resonant frequency of the source, 
all absorber nuclei are in the ground state and no 
photon or conversion electron present; 

 𝐵𝑘(𝜔): all nuclei are in the ground state and only 
one photon is present of wave number 𝑘 and 
energy ℏ𝜔𝑘 with no conversion electron present 
(see the discussion in D to explain why the wave 
numbers k are used rather than wave vectors);  

 𝐶𝑚(𝜔): the absorber nucleus located at position 
 𝑥 = 𝑥𝑚 is excited and its energy is given by ℏ𝜔𝑜

′  
where 𝜔𝑜

′  is the resonant frequency of the 
absorber nuclei (here assume that there may be a 
(slight) difference between the nuclear energy of 
the source and those of the absorber nuclei), and 
no photon or conversion electron present; 

 𝐷𝑝(𝜔): a conversion electron from the source 

nucleus is present, its momentum is p while all 

nuclei are in the ground state (here the problem 
is not formulated in three dimensions in order to 

keep the notation as simple as possible without 
detracting from generality as will be seen that the 
only effect of the internal conversion processes 
will be the introduction of a linewidth 𝛤𝑐 in the 
equations); 

 𝐸𝑚𝑝(𝜔): a conversion electron from the absorber 

nucleus located at position 𝑥 = 𝑥𝑚 is present, while 
all nuclei are in the ground state and no gamma 
photon is present. 

Before continuing the theoretical analysis, it is 
important to discuss at this stage the forward 
direction in some detail. A gamma photon 
emitted from a source nucleus in the forward 
direction will arrive at the detector if there has 
not been any interaction between the gamma 
photon and the absorber nuclei, initially all in the 
ground state. If the emission direction is not in 
the forward direction, the gamma photon will not 
arrive at the detector if no interaction between the 
absorber nuclei has occurred. If this process is the 
only one present, the detector would register 
gamma photons coming directly from 
spontaneous gamma emission and the frequency 
spectrum would be a familiar Lorentzian line 
(Greenwood  and Gibb, 1971; Odeurs et al., 2000) 

for long times compared to the half-life of the 
nuclear excited state. 

If interactions occur between an emitted gamma 
photon and the absorber nuclei, one of them will 
be excited by absorption of the photon, implying 
that this gamma photon will disappear and the 
absorber nucleus will pass to the excited state. It 
will then emit a gamma photon, passing again to 
the nuclear ground state. This secondary gamma 
photon will be detected only when it has the right 
direction, i.e., if it is emitted in the forward 
direction.  

At this stage of the discussion, several remarks, A 
to G, are made as follows. 

A. When a gamma photon is detected, it is 
impossible to know which physical process 
has occurred: it could be the photon coming 
straight from the source nucleus without any 
interaction with an absorber nucleus or it 
could be a gamma photon that was emitted 
by an absorber nucleus after this one 
absorbed the initial gamma photon coming 
from the source nucleus. If there are many 
identical absorber nuclei present in the 
absorber, each one of them can absorb and re-
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emit a gamma photon. Only when this re-
emitted gamma photon has the right 
direction, i.e. again the forward direction, it 
will reach the detector. There is no possible 
way to know which absorber nucleus has 
absorbed and re-emitted this gamma photon 
(Heeg et al., 2021). 

B. Multiple scattering, i.e. multiple absorptions 
and re-emissions of a gamma photon by two 
or more absorber nuclei, can occur. Again, 
when a gamma photon is detected, there is no 
possible way to know which processes have 
occurred. Therefore, all possibilities have to 
be taken into account, each one being 
described by its quantum mechanical 
probability amplitude (Heeg et al., 2021).  

C. The total quantum mechanical amplitude is 
the sum of the individual amplitudes. The 
probability to detect a gamma photon is 
proportional to the square of the absolute 
value of the total amplitude. This probability 
contains a sum of the squares of the absolute 
values of the individual amplitudes but also 
“cross terms” containing products of two or 
more individual amplitudes. These cross 
terms give rise to the so-called interferences 
between the various terms (Odeurs and Hoy, 
2005). These interference terms appear to be 
crucial. 

D. It is clear that the forward direction plays a 
crucial role because a detected photon must 
have the forward direction, otherwise it will 
not be detected. It could be argued that the 
secondary gamma photons could be emitted 
in any direction, as long as the "last" photon 
produced is in the forward direction. 
However, the detailed structure of the 
equations in three dimensions (Odeurs et al., 

2000) shows that the processes describing the 
absorption and re-emission of gamma 
photons contain the positions of the absorber 
nuclei leading to “phase factors” such as 

𝑒𝑥𝑝(±𝑖�⃗� ∙ 𝑟 𝑚) (Schiff, 1968), with 𝑟 𝑚 the 
position, with respect to the origin of a 
coordinate system, of absorber nucleus 
labeled m. In what follows the position of the 

source nucleus is taken as the origin of the 
coordinate system. The ±  signs are 
connected to absorption (+) and emission 
(−). The detailed analysis presented in 
Odeurs et al., 2000 shows that for random 

positions of the nuclei in the absorber, such 
as those in an amorphous or a polycrystalline 
material, the presence of the phase factors has 
as a result that the interference terms, 
mentioned in C., give a total contribution that 
is completely negligible for all directions 
except for the forward direction. It is also 
shown (Odeurs et al., 2000) that radiation 

temporarily going “backward”, i.e. back in 
the direction of the source nucleus, will also 
be associated to a negligible amplitude. Thus, 
it can be concluded that only the forward 
direction has to be considered, also for the 
“intermediate” gamma photons in 
interacting present in the absorber. It means 
that the problem can be simplified by 
restricting it to the forward direction, which 
will be taken as the x-direction. This has 
already been anticipated in the notation of 
the amplitude 𝐵𝑘(𝜔), defined above. 

E. For an absorber that is a single crystal, there 
can be constructive interferences for 
particular directions, called Bragg directions 
(Ashcroft and Mermin, 1976); for nuclear 
Bragg scattering, see e.g. Smirnov and 
Chumakov, (2019). In this case the problem 
has to be reformulated if these Bragg 
directions are considered. The forward 
direction, however, remains here to a 
privileged direction and the present 
formulation of the problem in one dimension 
stands. 

F. Emission and re-absorption of conversion 
electrons can be considered as well. Here too, 

there will be phase factors, 𝑒𝑥𝑝 (± 
𝑝 

ℏ
∙ 𝑟 𝑚), 

similar to those for photon emission and 
absorption. 𝑝   is the linear momentum of the 
conversion electron. However due to the 
short range of the electrons in a solid-state 
material, only emission and re-absorption by 
the same atom/nucleus are considered. It 
turns out that these processes give only rise 
to line broadening of the nuclear excited state 
due to process of conversion electron, 
leading to the width, 𝛤𝑐, of the nuclear excited 
state due to conversion electron, mentioned 
already in the second sub-section of Section 
2. To maintain the notations as simple as 
possible, the mathematical problem will be 
formulated for the conversion electron 
processes also in one dimension, bearing in 
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mind that the final result for these processes, 
the line partial broadening, corresponds to 
the actual 𝛤𝑐. 

G. In fact the same discussion could be done for 
radiative broadening, which is due to 
emission and sub-sequent self-absorption of 
gamma photons by a nucleus in the excited 
state. In the language of quantum 
electrodynamics, these emission and re-
absorption processes are represented by the 
so-called Feynman diagrams, see e.g. 
(Schweber, 1994). For the radiative width, the 
formulation is kept in one dimension 
although it could be easily extended in three 
dimensions. The partial line broadening 
corresponding to the photon emission and 
self-absorption by a nucleus will always give 
the radiative width 𝛤𝑟.  

Using equations (5) and (6) the general 
expression leads to the following equation (Hoy, 
1997): 

(𝜔 − 𝜔𝑛 + 𝑖𝜀)𝐴𝑛(𝜔) 

= ∑𝐴𝑞(𝜔)
⟨𝜑𝑛|𝐻|𝜑𝑞⟩

ℏ
+ 𝛿𝑛𝑙

𝑞

.               (7) 

The presence of the Kronecker delta 𝛿𝑛𝑙 in 
equation (7) accounts for the fact that the system 
is initially in the |𝛹𝑙⟩ state (Heitler, 1954), which 
is the state where the source nucleus is excited, 
the absorber nuclei in the ground state and no 
photon or conversion electron are present. The 
infinitesimal positive real quantity ε is to ensure 
causality, i.e. the excited nuclear state of the 
source nucleus cannot be formed before 𝑡 = 0. In 
the next subsection the precise determination of 
this initial time, 𝑡 = 0, will be considered further. 

Substituting all five possible amplitudes into 
equation (7), the following system of coupled 
linear equations are obtained: 

(𝜔 − 𝜔𝑜 + 𝑖𝜀)𝐴(𝜔) = 1 + ∑
𝐵𝑘(𝜔)𝐻𝑘

ℏ
𝑘

+ ∑
𝐷𝑝(𝜔)𝐻𝑝

ℏ
𝑝

                                                          (8) 

(𝜔 − 𝜔𝑘 + 𝑖𝜀)𝐵𝑘(𝜔) =
𝐴(𝜔)𝐻𝑘

∗

ℏ
+ ∑

𝐶𝑚(𝜔)𝐻𝑘
∗

ℏ
𝑚

𝑒−𝑖𝑘𝑥𝑚                                                          (9) 

(𝜔 − 𝜔𝑜
′ + 𝑖𝜀)𝐶𝑚(𝜔) = ∑

𝐵𝑘(𝜔)𝐻𝑘

ℏ
𝑒𝑖𝑘𝑥𝑚

𝑘

+ ∑
𝐸𝑚𝑝(𝜔)𝐻𝑝

ℏ
𝑒𝑖(

𝑝
ℏ
)𝑥𝑚

𝑝

                               (10)   

(𝜔 − 𝜔𝑝 + 𝑖𝜀)𝐷𝑝(𝜔) =
𝐴(𝜔)𝐻𝑝

∗

ℏ
                                                                                                   (11) 

(𝜔 − 𝜔𝑝 + 𝑖𝜀)𝐸𝑚𝑝(𝜔) =
𝐶𝑚(𝜔)𝐻𝑝

∗

ℏ
𝑒−𝑖(

𝑝
ℏ
)𝑥𝑚                                                                               (12)

The factors 𝐻𝑘 et 𝐻𝑘
∗ are matrix elements 

corresponding to the absorption and emission of 
the photon respectively while 𝐻𝑝 et 𝐻𝑝

∗ are matrix 

elements corresponding to the absorption, by the 
atom to which the nucleus in question belongs, 
and the emission of a conversion electron, 
respectively. It is assumed that for 𝑡 < 0, all 
amplitudes are zero (Heitler, 1954). This 
important point will be discussed in the third 
sub-section of Section 2.  

The set of equations (8)-(12) can be interpreted in 
a straightforward manner. To elucidate them, (9) 
and (10) are considered. 

Equation (9) gives the evolution of 𝐵𝑘(𝜔), which 
is the amplitude related to the presence of a 

photon with wave number k. This photon can be 
produced by the source nucleus, with amplitude 
𝐴(𝜔), as well as by all absorber nuclei, if they are 
excited, with amplitudes 𝐶𝑚(𝜔)  ∀ 𝑚. The 
emission by absorber nucleus m is described by 

the phase factor 𝑒−𝑖𝑘𝑥𝑚, as has been explained in 
D. above. For the source the phase factor is 
obviously 1 because it is chosen to be at the origin 
of the coordinate system. 

Equation (10) gives the evolution of 𝐶𝑚(𝜔), which 
is the amplitude related to absorber nucleus m. 

The sum ∑
𝐵𝑘(𝜔)𝐻𝑘

ℏ
𝑒𝑖𝑘𝑥𝑚

𝑘  represents the 

absorption processes of photons, having wave 
number 𝑘, by nucleus m, hence the presence of 

the phase factor 𝑒𝑖𝑘𝑥𝑚 . ∑
𝐸𝑚𝑝(𝜔)𝐻𝑝

ℏ
𝑒𝑖(

𝑝

ℏ
)𝑥𝑚

𝑝  
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represents the self-absorption by nucleus 𝑚 of the 
conversion electron produced by it, hence the 

phase factor 𝑒𝑖(
𝑝

ℏ
)𝑥𝑚 . As mentioned before, this 

equation is related to the conversion electron 
linewidth 𝛤𝑐. 

All equations can be interpreted in a similar 
matter. 

Determination of 𝒕 = 𝟎  

The time 𝑡 = 0 is defined as the time of formation 
of the source nucleus in its excited state. At this 
time, all the absorber nuclei are still in the ground 
state and there is not yet a gamma photon or 
conversion electron present. The time of 
formation of the excited nuclear state can be 
determined experimentally by the precursor 
method and the detector coincidence method, as 
will be explained in the following. To illustrate 
this method, consider the radioactive decay of the 
Mössbauer isotope of 57Fe (Fig. 2). 

By electronic capture the 136 keV excited state 
above the ground state of 57Fe can be formed from 
57Co (which can be produced in a nuclear 
reactor). From the 136 keV state, 57Fe is de-excited 
and produces the 14.4 keV state (90% of cases), 
which is the first excited state of 57Fe. The system 
evolves over time and the nucleus eventually 
returns to the stable ground state. The formation 
time of the 14.4 keV state can be determined 
using two detectors, D1 and D2. D1 detects the 
arrival of the 122 keV, “precursor”, photon (the 
difference between 136 keV and 14.4 keV), D2 

measures the arrival of the 14.4 keV photon. As 
long as D1 has not given a signal, the 14.4 keV 
state has not yet been formed. The time 𝑡 = 0 is 
then defined by the time when D1 has recorded a 
122 keV photon. At this precise moment, D2 is 
switched on and it is this moment that defines the 
initial time 𝑡 = 0 of an experiment. This is called 
the two-detector coincidence method: the second 
detector, here D2, starts recording only when it 
has received a signal from the first, D1, meaning 
here the detection of a 122 keV photon, the 
"precursor" to the formation of the 14.4 keV 
nuclear state. The system then evolves from this 
initial time. By this coincidence method all 
amplitudes, including the one corresponding to 
the source nucleus in the 14.4 keV excited state, 
are zero for 𝑡 < 0, (Zagato et al., 2014) and the 
system defined above only starts to evolve from 
𝑡 = 0+. 

Solution 

The system of equations (8)-(12) can be solved 
exactly for any number of absorber nuclei (Hoy, 
1997). In order to highlight the essential elements 
of the results, the following the case of double 
scattering, i.e. with two nuclei in the absorber, are 
considered.  

It has been shown (Hoy, 1997) that, when the 
absorber contains only two quasi-resonant 
Mössbauer nuclei, the amplitude 𝑏𝜔𝑘

(𝑡) of 

finding a photon of frequency 𝜔𝑘 emitted at time 
𝑡 is given by:  

𝑏𝑘(𝑡) =
𝐻𝑘

∗

ℏ
[
1 − 𝑒−𝑖(𝜔𝑜−𝜔𝑘−𝑖

𝛤
2ℏ

)𝑡

𝜔𝑘 − 𝜔𝑜 + 𝑖
𝛤
2ℏ

] + 2
𝐻𝑘

∗

ℏ
(−𝑖

𝛤𝑟
2ℏ

)
1

(𝜔𝑘 − 𝜔𝑜 + 𝑖
𝛤
2ℏ

)(𝜔𝑘 − 𝜔𝑜
′ + 𝑖

𝛤
2ℏ

)
+

𝐻𝑘
∗

ℏ
(−𝑖

𝛤𝑟
2ℏ

)
2

×
1

(𝜔𝑘 − 𝜔𝑜 + 𝑖
𝛤
2ℏ

)(𝜔𝑘 − 𝜔𝑜
′ + 𝑖

𝛤
2ℏ

)
2                                                                                          (13) 

where 𝜔𝑜 is the nuclear Bohr frequency of the 
source nucleus, 𝜔𝑜

′  is the Bohr frequency of the 
absorber nuclei. At exact resonance, both 
frequencies are equal. 

Results  

Non-resonance case (𝝎𝒐 ≠ 𝝎𝒐
′ ) 

The equation (13) of the amplitude 𝑏𝑘(𝑡) is the 
starting point to find a photon of frequency 𝜔𝑘 
present at time t. The subscript k is changed to 𝜔𝑘 
to emphasise the frequency dependence  𝜔𝑘  of 
𝑏𝑘(𝑡). The corresponding time-dependent 
probability density of finding a gamma photon of 
frequency 𝜔𝑘 is: 

 

𝜌 = 𝑃𝑟 𝑜 𝑏𝜔𝑘

𝑜𝑓𝑓_𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
(𝑡) = |𝑏𝜔𝑘

(𝑡)|
2
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= |
𝐻𝑘

∗

ℏ
[
1 − 𝑒−𝑖(𝜔𝑜−𝜔𝑘−𝑖

𝛤
2ℏ

)𝑡

𝜔𝑘 − 𝜔𝑜 + 𝑖
𝛤
2ℏ

]

+ 2
𝐻𝑘

∗

ℏ
(−𝑖

𝛤𝑟
2ℏ

)
1

(𝜔𝑘 − 𝜔𝑜 + 𝑖
𝛤
2ℏ

) (𝜔𝑘 − 𝜔𝑜
′ + 𝑖

𝛤
2ℏ

)
+

𝐻𝑘
∗

ℏ
(−𝑖

𝛤𝑟
2ℏ

)
2

×
1

(𝜔𝑘 − 𝜔𝑜 + 𝑖
𝛤
2ℏ

)(𝜔𝑘 − 𝜔𝑜
′ + 𝑖

𝛤
2ℏ

)
2|

2

                                                       (14) 

After somewhat tedious calculations  

𝜌(𝑡) = 𝑃𝑟 𝑜 𝑏𝜔𝑘

𝑜𝑓𝑓_𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒(𝑡)

=
|𝐻𝑘

∗|2

ℏ2
{{[(𝜔𝑘 − 𝜔𝑜

′ )2 − (𝜔𝑘 − 𝜔𝑜
′ )2𝑒−

𝛤
2ℏ

𝑡 𝑐𝑜𝑠(𝜔𝑘 − 𝜔𝑜) 𝑡 + (
𝛤

2ℏ
)
2

𝑒−
𝛤
2ℏ

𝑡 𝑐𝑜𝑠(𝜔𝑘 − 𝜔𝑜) 𝑡

− (
𝛤

2ℏ
)
2

− (
Γ𝑟

2ℏ
)
2

+
Γ𝑟Γ

2ℏ2
+

Γ

ℏ
(𝜔𝑘 − 𝜔𝑜

′ )𝑒−
𝛤
2ℏ

𝑡 𝑠𝑖𝑛(𝜔𝑘 − 𝜔𝑜) 𝑡]

2

+ [(𝜔𝑘 − 𝜔𝑜
′ )2𝑒−

𝛤
2ℏ

𝑡 𝑠𝑖𝑛(𝜔𝑘 − 𝜔𝑜) 𝑡 − (
𝛤

2ℏ
)
2

𝑒−
𝛤
2ℏ

𝑡 𝑠𝑖𝑛(𝜔𝑘 − 𝜔𝑜) 𝑡 +
𝛤

ℏ
(𝜔𝑘 − 𝜔𝑜

′ )

−
𝛤

ℏ
(𝜔𝑘 − 𝜔𝑜

′ )𝑒−
𝛤
2ℏ

𝑡 𝑐𝑜𝑠(𝜔𝑘 − 𝜔𝑜) 𝑡 −
𝛤𝑟
ℏ

(𝜔𝑘 − 𝜔𝑜
′ )]

2

}

× {[(𝜔𝑘 − 𝜔𝑜)(𝜔𝑘 − 𝜔𝑜
′ )2 − (

𝛤

2ℏ
)
2

(𝜔𝑘 − 𝜔𝑜) −
𝛤2

2ℏ2
(𝜔𝑘 − 𝜔𝑜

′ )]

2

+ [
𝛤

ℏ
(𝜔𝑘 − 𝜔𝑜) × (𝜔𝑘 − 𝜔𝑜

′ ) +
𝛤

2ℏ
(𝜔𝑘 − 𝜔𝑜

′ )2 − (
𝛤

2ℏ
)
3

]

2

}

−1

}                    (15) 

The equation (15), interpreted in the first 
subsection of the discussion, gives the time 
dependence of the frequency composition of the 
scattered photon during the quasi-resonant 
nuclear scattering process by two nuclei. 

In the next subsection the resonance condition is 
considered. 

Resonance case (𝝎𝒐 = 𝝎𝒐
′ ) 

If the source and absorber nuclei are in exact 
resonance, then 𝜔𝑜 = 𝜔𝑜

′ . Under this condition, 
the probability of finding a photon of frequency 
𝜔𝑘 emitted at time t given by equation (14) 
simplifies because, by substituting 𝜔𝑜

′  by 𝜔𝑜: 
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𝜌(𝑡) = 𝑃𝑟 𝑜 𝑏𝜔𝑘

𝑖𝑛𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒(𝑡)

=
|𝐻𝑘

∗|2

ℏ2
{{[(𝜔𝑘 − 𝜔0)

2 − (𝜔𝑘 − 𝜔0)
2𝑒−

𝛤
2ℏ

𝑡 𝑐𝑜𝑠(𝜔𝑘 − 𝜔𝑜) 𝑡 + (
𝛤

2ℏ
)
2

𝑒−
𝛤
2ℏ

𝑡 𝑐𝑜𝑠(𝜔𝑘 − 𝜔𝑜) 𝑡

− (
𝛤

2ℏ
)
2

− (
Γ𝑟

2ℏ
)
2

+
Γ𝑟Γ

2ℏ2
+

Γ

ℏ
(𝜔𝑘 − 𝜔0)𝑒

−
𝛤
2ℏ

𝑡 𝑠𝑖𝑛(𝜔𝑘 − 𝜔𝑜) 𝑡]

2

+ [(𝜔𝑘 − 𝜔0)
2𝑒−

𝛤
2ℏ

𝑡 𝑠𝑖𝑛(𝜔𝑘 − 𝜔𝑜) 𝑡 − (
𝛤

2ℏ
)
2

𝑒−
𝛤
2ℏ

𝑡 𝑠𝑖𝑛(𝜔𝑘 − 𝜔𝑜) 𝑡 +
𝛤

ℏ
(𝜔𝑘 − 𝜔0)

−
𝛤

ℏ
(𝜔𝑘 − 𝜔0)𝑒

−
𝛤
2ℏ

𝑡 𝑐𝑜𝑠(𝜔𝑘 − 𝜔𝑜) 𝑡 −
𝛤𝑟
ℏ

(𝜔𝑘 − 𝜔0)]

2

}

× {[(𝜔𝑘 − 𝜔𝑜)
3 − (

𝛤

2ℏ
)
2

(𝜔𝑘 − 𝜔𝑜) −
𝛤2

2ℏ2
(𝜔𝑘 − 𝜔0)]

2

+ [
𝛤

ℏ
(𝜔𝑘 − 𝜔𝑜)

2 +
𝛤

2ℏ
(𝜔𝑘 − 𝜔0)

2 − (
𝛤

2ℏ
)
3

]

2

}

−1

}                                 (16) 

Equation (16) again shows the time dependence 
of the frequency composition of the scattered 
photon, the time being expressed again in terms 
of the natural lifetime 𝜏. The interpretation of this 
equation (16) is given in the second subsection of 

the discussion. 

Discussion  

Non-resonance case (𝝎𝒐 ≠ 𝝎𝒐
′ ) 

The contribution to the equation (15) contains 
several terms: emission from the source and 
scattering from the absorbing nuclei. There are 
contributions from simple scattering, where the 

gamma photon is scattered by one nucleus and 
goes directly to the detector. Another 
phenomenon is also possible: the photon emitted 
by the source can be absorbed by the first 
absorber nucleus, which in turn will emit a 
photon. This photon can go straight to the 
detector, or it can be absorbed by the other 
absorber nucleus before reaching the detector. It 
has been shown (Odeurs et al., 2000) that 
backscattering processes, where a photon 
“returns backward”, do not have to be 
considered because of destructive interference, as 
has been mentioned before. 

Figure 3 

Probability density for 𝑡 = 0.5𝜏 case of 𝐹57 𝑒 off-resonance where 𝜔𝑜
′ − 𝜔𝑜 =

𝛤

ℏ
. 

 
ωk − ωo 

 

Time 
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Figure 4 

Probability density for 𝑡 = 2.5𝜏 case of 𝐹57 𝑒 off-resonance where𝜔𝑜
′ − 𝜔𝑜 =

𝛤

ℏ
.  

 

   Ωk − ωo 

Figure 5. Probability density for 𝑡 = 4.5𝜏 case of 𝐹57 𝑒 off-resonance where 𝜔𝑜
′ − 𝜔𝑜 =

𝛤

ℏ
 

 

ωk − ωo 

Figures (3) to (7) illustrate the photon probability 
density as a function of the difference of the 
photon frequency and the nuclear frequency, 
𝜔𝑘 − 𝜔𝑜, for various times that are expressed in 
terms of the lifetime 𝜏 of the nuclear excited state, 
in the case of the off-resonance condition, where 

ωo
′ − ωo =

Γ

ℏ
 is taken, i.e. the difference of the two 

nuclear energies is equal to one total linewidth. 

Overall, as the time increases, it is noticed that the 
frequencies and the overall appearance of the 

scattered photon change. The envelope of the 
frequency distribution resembles the Lorentz 
distribution for a large time interval as shown on 
figure 7 (𝑡 = 20.5 τ). Moreover, the probability of 
finding certain frequencies increases 
considerably with time, figure 6 confirms this 
assertion. With increasing time, the area defined 
by the curve and the horizontal axis continues to 
increase until it reaches its maximum value for 
large t. This statement can also be confirmed by 

these figures if they are put on the same scale. It 

Time 

Time 
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can be seen that the behaviour of the gamma 
photon is quite complex, which is due to the 

scattering processes as well as to the off-
resonance condition. 

Figure 6.  

Probability density for 𝑡 = 6.5𝜏 case of 𝐹57 𝑒 off-resonance where 𝜔𝑜
′ − 𝜔𝑜 =

𝛤

ℏ
. 

 

ωk − ωo 

Figure 7  

Probability density for 𝑡 = 20.5𝜏 case of 𝐹57 𝑒 off-resonance resonance where  𝜔𝑜
′ − 𝜔𝑜 =

𝛤

ℏ
. 

 

ωk − ωo 

 

Resonance case (𝝎𝒐 = 𝝎𝒐
′ ) 

The simulations of the probability density, 
expressed by equation (16) and Figures 8 to 13, 

are analysed for several times 𝑡, again expressed 
using the mean lifetime τ. 

Time 

Time 
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Although each figure has its own scale, a 
comparison can be made, as will be explained 
below. 

As time increases, the frequencies and the overall 
appearance of the scattered photon change 
drastically. Note that the probability that the 
radiation has a frequency 𝜔𝑘 = 𝜔𝑜 is almost zero 
for a time close to 𝑡 = 0. For this time, the scale in 
Figure 8 shows that the absolute value of the 
frequency distribution function is very small, 
which of course is due to the fact that the source 
nucleus is still with a high probability in the 
excited state so that the probability of finding a 

gamma photon is still very low. The observed 
extremum for 𝜔𝑘 = 𝜔𝑜 can be understood as the 
absorption of the present gamma photon (albeit  

with low probability) by the absorbing nuclei. 
Thus, frequencies 𝜔𝑘 close to 𝜔𝑜 will be absorbed 
with a higher probability than others. As time 
increases, the probability of a gamma photon 
absorption increases. Indeed, it is observed that, 
between times 𝑡 = 0 and 𝑡 = 3.5𝜏, an increase in 
the probability density for the radiation to have a 
frequency 𝜔𝑘 = 𝜔𝑜, until it reaches its maximum 
value. 

 

Figure 8.  

Probability density for 𝑡 = 0.5 𝜏 case of 𝐹57 𝑒 in the resonance case 

 

 

ωk − ωo 
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Figure 9.  

Probability density for 𝑡 = 1.5𝜏 case of 𝐹57 𝑒 in the resonance case 

 

ωk − ωo 

Figure 10.  

Probability density for 𝑡 = 2.5𝜏 case of 𝐹57 𝑒 in the resonance case  
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Figure 11.  

Probability density for 𝑡 = 4.5 𝜏 case of 𝐹57 𝑒 in the resonance case  

 

ωk − ωo 

Figure 12.  

Probability density for 𝑡 = 6.5 𝜏 case of 𝐹57 𝑒 in the resonance case  
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Figure 13.  

Probability density for 𝑡 = 20 𝜏 case of 𝐹57 𝑒 in the resonance case  

ωk − ωo 

For times greater than 𝑡 = 3.5𝜏, the probability 
density of having certain frequencies increases 
with time to such an extent that the probability of 
the radiation having a frequency 𝜔𝑘 = 𝜔𝑜 is no 
longer maximum. For very large times, the 
frequency distribution tends towards the 
distribution shown in Figure 13; it is not really a 
Lorentz distribution because of oscillations. 
Finally, with increasing time, the area bounded 
by the curve and the horizontal axis continues to 
increase until it reaches its maximum value for 
very large 𝑡. Figures 10 and 11 confirm this 
assertion by showing how, with time, this area 
increases, as they are on the same scale. 
Furthermore, Figures 8 to 13 allow a better 
appreciation of the increase of the area bounded 
by the curve and the horizontal axis. It is worth 
noting, however, that the details of the extremely 
rapid oscillations are probably difficult to 
demonstrate experimentally.   

 

 

Conclusion 

The study included the interaction of gamma 
radiation, emitted by an excited Mössbauer 
nucleus, with a polycrystalline absorber 
containing Mössbauer nuclei in the ground state. 

The study of the radiation emitted in the resonant 
nuclear scattering process of two nuclei also 
reveals that, when the absorber nuclei are not at 
exact resonance with the source nucleus, the 
probability of finding a photon with frequency 
equal to the nuclear frequency, 𝜔𝑘 = 𝜔𝑜, is no 
longer always maximal. Moreover, the area 
defined by the curve and the horizontal axis 
increases with time and some frequencies 
become more probable than others. For long 
times, the envelope of the distribution looks like 
a Lorentz curve. 

In the case of exact resonance between the source 
and absorber nuclei, the frequency distribution is 
symmetric with respect to the value 𝜔𝑘 = 𝜔𝑜. 
From this study, it appears that the sheer 
presence of the absorber nuclei between the 
source and the detector means that the photons 
emitted no longer have the same properties as 
those emitted when the source is isolated (Hoy & 
Odeurs, 2012). Note that the frequency 
distribution is given by a complicated expression, 
which is impossible to "guess" intuitively: 
cumbersome calculations are necessary. The 
presence of the absorber nuclei therefore 
fundamentally changes the properties of the 
gamma radiation emitted by the source. These 
conclusions remain valid for an arbitrary number 

Time 
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of absorbers, N, although the expressions become 

more and more complicated. The model 
presented here can be used to calculate 
analytically the properties of the transmitted 
gamma radiation for any number of absorber 

nuclei (for any value of the thickness of the 
absorber), although the simulation of the results 
will obviously necessitate some tedious 
computer work. 
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